CS2810 Day 18
Mar 282022
Admin:
Quiz is Friday
Review session tomorrow (see piazza)
stop by my OH on Thursday too!
final swap sections (lottery)
set Final lottery

Content: By Tomorrow NigHt
Big goal: T-Tests (difference of mean of two distributions)
Pooled Covariance
Fीएवाutwotailed hypothesis tests

Which song is preferred by students?

$S^{3}=\operatorname{VAR}(\bar{x}-\bar{y})$
Which song is preferred by students?
$\begin{aligned} & \text { Let it go (X): 2, 2, 3, 5, 3, 5, 4, , , , 3 (Ax }=10) \\ & \text { Nights }(Y): 1,5,3,1,4,4,2,4,4,1,1(N y=11)\end{aligned} \quad \hat{S}^{\partial}=\frac{\hat{\sigma}_{x}^{\partial}}{N_{\lambda}}+\frac{\hat{\sigma}_{y}^{2}}{N_{y}}$

$$
\begin{aligned}
& \bar{x}=\frac{2+2+3 \cdot 5+3+5+4+3+1+3}{10}=\frac{31}{10}=3.1 \quad \bar{y}=\frac{30}{11} \\
& {\hat{Q_{2}}}_{x}=\frac{1}{N-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{10-1}\left[(2-3.1)^{2}+(2-3.1)^{2}+(3-3.1)^{2}+\ldots\right. \\
& \underline{\underline{E}} 1.65 \\
& \hat{\sigma}_{y}^{2} \cong 2.418 \\
& \hat{S}^{2} \cong \frac{1.65}{10}+\frac{2.418}{11} \cong .385
\end{aligned}
$$

$$
\begin{gathered}
\bar{z}=\frac{\bar{x}-\bar{y}}{\hat{s}}=\frac{3.1-\frac{30}{11}}{\sqrt{.385}} \hat{=} .6 \\
\\
\text { Since } \hat{S}^{2}=.385
\end{gathered}
$$

$$
\begin{aligned}
& E[x]=\mu \\
& \operatorname{VAR}(x)=\sigma^{2}
\end{aligned}
$$

COLCECT SAMPLES

$$
\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & \cdots
\end{array}
$$

$$
\begin{aligned}
& \hat{N}=\bar{x}=\frac{1}{N_{x}} \sum x_{i} \\
& \hat{\sigma}^{2}=\frac{1}{N_{x}-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{0}
\end{aligned}
$$

Testing Difference of means:
Given samples from two distributions, we seek to test if the mean of one is different than other
Assumptions: $\quad H_{1}{ }^{2} N_{x}>\rho_{y} \quad J_{1}: N_{x} \neq N_{y} \quad H_{1}: N_{x}<N_{y}$
2. Variance of each distribution is the same
3. Either

- Each distribution is normal
- There are sufficiently many observations that we can claim mean of distribution is normal
- Central Limit Theorem: mean of a set of indep observations gets closer to normal with more samples

4. Our variance estimates equals the ground truth variance

- This assumption iṣ too strong to make approach practical ... we'll modify to remove it later

In Class Assignment 1
Describe a circumstance which explicitly breaks assumption 1 in our music preference example.
friends sit together and have similar music interests, so sampling neighbors in class might introduce dependancy
temporal dependancy between samples (earlier samples influence the later ones)

- can be solved by "blinding" everyone to other's survey responses
temporary dependancy between songs (earlier songs surveyed have higher / lower score)
- have two groups and mix the order in which songs are presented
shouldn't survey the person who selected the song itself

Testing Difference of Mean: Overview (z sear version)
st \propto 0: Compute \backslash hat $\{S\} \wedge{ }^{\wedge}$, the sample variance of $\backslash \operatorname{bar}\{x\}$ - $\backslash \operatorname{bar}\{y\}$

$$
\hat{S}^{2}=\operatorname{var}(\bar{x} \cdot \bar{y})
$$

Stay 1 : Compute Z statistic
steppe: Build distribution of Z statistic under the null hypothesis $N(0,1)$
Step 3: Compute p-value
Step 4: Compare p-value to alpha threshold
If p-value < alpha:
reject null hypothesis, claim hypothesis is true
If pvalue >= alpha:
don't reject null hypothesis (no claims made)

STES D. compute S^{2}

$$
\begin{aligned}
\operatorname{VAR}(\bar{x}-\bar{y}) & =\operatorname{VAR}(\bar{x})+\operatorname{VAR}(-\bar{y}) \quad \bar{y} \sim N\left(\mu_{y}, \sigma^{0}\right) \\
\operatorname{VAR}(c x)=\sum^{2} \operatorname{VAR} x & =\operatorname{VAR}(\bar{x})+(-1)^{2} \operatorname{VAR}(\bar{y}) \\
& =\operatorname{VAR}(\bar{x})+\operatorname{VAR}(\bar{y})
\end{aligned}
$$

From Assumprowns

$$
\begin{aligned}
&= \operatorname{VAR}(\bar{x})+\operatorname{VAR}(\bar{y}) \\
&= \operatorname{VAR}\left(\frac{x_{1}+x_{2}+x_{3}+\ldots}{N x}\right)+\operatorname{VAR}\left(\frac{y_{1}+y_{2}+y_{3}+\ldots}{N_{y}}\right) \\
&= \frac{1}{N_{x}^{2}}\left(\operatorname{VAR}\left(x_{1}\right)+\operatorname{VAR}\left(x_{3}\right)+\ldots .\right. \\
& \frac{1}{N_{y}^{2}}\left(\operatorname{VAR}\left(y_{1}\right)+\operatorname{Var}\left(y_{2}\right)+\ldots\right)=\frac{\operatorname{VAR}(x)}{N_{x}}+\frac{\operatorname{VAR}(y)}{N_{y}} \\
& \hat{S}^{2}=\frac{\hat{\sigma}_{x}^{2}}{N_{x}}+\frac{\hat{\sigma}_{y}^{2}}{N_{y}}
\end{aligned}
$$

Assume x y indep

$$
\operatorname{VAR}(A)+\operatorname{VA}(B)=
$$

STEP 1: COMDUTE Z-STATISTIC

$$
z=\frac{\bar{x}-\bar{y}}{\hat{s}}
$$

STEP a. BoILD Distribution of 2 STATistic onder Noil Hypotiesis ($H_{0}: N_{x}=N_{y}$)
\rightarrow Since \bar{x}, \bar{y} aDE Nonmal so

$$
z=\frac{\bar{x}-\bar{y}}{s}
$$ is $\frac{\bar{x}-\bar{y}}{s}$

\rightarrow UNDER NOUL Hypotmesis $E[\pi]=E[j]$ so $E[z]=0$

$$
\begin{aligned}
\operatorname{VAR}(z) & =\operatorname{Van}\left(\frac{\bar{x}-\bar{y}}{\hat{s}}\right) \\
& =\frac{1}{\hat{s}^{0}} \operatorname{Van}(\bar{x}-\bar{y}) \\
& =\frac{S^{2}}{\hat{s}^{2}}=1
\end{aligned}
$$

Assume 4: war estimate is Exact
 (z is ofted cance "standard normal")

Computing Pracue

Testing Difference of Mean: Overview $(z \operatorname{sear} \quad$ version $)$
$H_{0}: N_{x}=N_{y}$
Step 0: Compute that $\{s\} \wedge 2$, the sample variance of $\backslash \operatorname{bar}\{x\}-\backslash \operatorname{bar}\{y\}$
step 1 : Compute zostafistic

$$
z=(\bar{x}-\bar{y}) / \hat{s}=, 6
$$

Step 2: Build distribution of Z statistic under the null hypothesis $\mathcal{N}(0,1)$
Step 3: Compute p-value
Step 4: Compare p-valuetolo phithreshold
If p-value < alpha:
 reject null hypothesis, claim hypothesis is true
If pvalue >= alpha: don't reject null hypothesis (no claims made)

ICA 1:
Compute a final p-value and summarize the results of our analysis about song preference

What if $\quad 2=0$

$$
\begin{aligned}
P_{\text {val }} & =2 \cdot \operatorname{cof}(0) \\
& =2 \cdot(.5)=1 \\
z & =\frac{\bar{x}-\bar{y}}{\hat{S}} \quad z=0 \Rightarrow \bar{x}=\bar{y}
\end{aligned}
$$

Testing Difference of means:
Given samples from two distributions, we seek to test if the mean of one is different than other

Assumptions:

1. Each observation is independent of all others

$$
\stackrel{\beta}{S} \text { ESTrmares } \operatorname{var}(\bar{x}-\bar{y})
$$

2. Variance of each distribution is the same
3. Either

- Each distribution is normal
- There are sufficiently many observations that we can claim mean of distribution is normal
- Central Limit Theorem: mean of a set of indef observations gets closer to normal with more samples
FOur variance estimates equals the ground truth variance
-This assumption is too strong to make approach practical ... we'll modify to remove it later

T Distribution
using a T Distruburian in Place of Normal Accounts for uncertainty in variance estimate

T Distridution
TO.stribution Nas I Parameren: Deorees of FreeDom (DF), $D F=N_{x}+N_{y}-2$
\rightarrow obserwations of

As Df increases < Disraißution Approneno Normal $\left(\hat{S}^{2}\right.$ is UNBIASED + LAN LARGE Numbees)
in Pytuod (AIL cowercase)
Fron Scipy.gtars import T

Let's summarize ...

Testing Difference of means (T-Test version ... use this one, Z-test only for exposition)
Given samples from two distributions, we seek to test if the mean of one is different than other
3 different hypotheses we can investigate:
$\mu_{0}: p_{x}>\mu_{y}$
$H_{1}: \mu_{x} \leq \mu_{y}$
Assumptions:

1. Each observation is independent of all others
2. Variance of each distribution is the same
3. Either

- Each distribution is normal
- There are sufficiently many observations that we can claim mean of distribution is normal
- Central Limit Theorem: mean of a set of indep observations gets closer to normal with more samples

Testing Difference of Mean: Overview (T) start version)
Step 0: Estimate \backslash hat $\{S\}^{\wedge} 2$, the sample variance of $\backslash \operatorname{bar}\{x\}-\backslash \operatorname{bar}\{y\}$
Step 1 : Compute T statistic

$$
T=(\bar{x}-\bar{y}) /\left.\right|_{\mathrm{S}} ^{\hat{S}}
$$

Step 2: Build distribution of T statistic under the null hypothesis

$$
T \sim T\left(D F=N x+N y^{-2}\right)
$$

Step 3: Compute p-value
Step 4: Compare p-value to alpha threshold
If p-value < alpha:
reject null hypothesis, claim hypothesis is true
If pvalue >= alpha:
don't reject null hypothesis (no claims made)

ICA 3

$H_{1} \cdot \mu_{x}>\mu_{y}$
 $H_{0}: \mu_{x} \leq \mu_{y}$

Somebody (somewhere) thinks starting each day at 4 AM with an ice cold shower will increase student performance. They conduct an experiment where a group of students wakes up at 4 AM with an icy shower while another group of students does not. Their test scores are listed below:

$$
x=90,95,90,80,70 \quad y=100,80,70,90,95
$$

Perform a two-sample T test (as shown) which is able to claim that the icy start to the day improves test scores at the alpha $=.05$ signifigance level.

1. Express hypotheses (algebraically: $\mathrm{H}_{-} 0:$ \mu_x > \mu_y while H_1: \mu_x <= \mu_y or similar)
2. Compute \hat\{S\}^2
3. Compute T statistic
4. Compute P-value
5. Synthesize your analysis with a one sentence summary

$$
\hat{S}^{\partial}=\frac{\hat{\sigma}_{x}^{2}}{N_{x}}+\frac{\hat{\sigma}_{y}^{2}}{N_{y}}
$$

If time in class ...

Family Wise Error Rate

CREDOR:XKCD

Family wise Error Rare
EAM test has $P($ TYPE, senor $)<.05=\alpha$
... But if we run many tests we increase Probability of at least 1 test Getting type 1 ERror Across all Experiments \triangle FAMILY WISE ERROR RATE (EWER)

Family wise Error Rerte

Bonferrons
To ensure $P($ fwer $)<\alpha$ use sionifigance
FTRESHOLD $\frac{\alpha}{N}$ in EACAL EXPERIMENT \rightarrow rotac \# Experiments

Experimental Bras

Fisw cavoat

RED	BCOE
HH IHK	HK

"There are twice as many RED Fibsu in waren"

WWAT If BLNE FISH ARE cess wrecy to BE canourt * How do my obsenvations Dedend on reawiy? if

BiAs Examples

