
• •	CS 2810 April 11	0	• •	•	0	•	•	• •	0	•	•	•	•	•	•	•	•	•	•	•	•
• •	Admin:	•	• •	•	•	•	•	• •	•	0	•	•	•	•	0	•	0	0	•	•	•
• •	- HW8 due sunday (HW9 released Tues after) - Quiz4 scheduling	•	• •	•	0	•	•	• •	0	0	•	•	•	•	0	0	0	0	•	•	•
• •	- TRACE	•	• •	•	•	•	•	• •	0	•	•	•	•	•	•	•	•	•	•	•	•
• •	Content:		0 0	0	0	•	0	• •	0	0	۰	۰	۰	۰	0	0	0	0	۰	۰	0
• •	Correlation - what it is	•	• •	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•
• •	- how its different than correlation	•	• •	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•
• •	Causation	•	• •	•	•	•	•	• •	•	•	•	•	•	•	0	•	•	•	•	•	•
• •	- its not correlation, even if its easily confu	Ise	d :	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•
• •	Conditional Probability	•	• •	•	•	0	•	• •	0	•	•	•	0	0	•	•	0	•	•	•	•
• •	- bayes rule - independence	0	• •	•	•	•	•	• •	•	0	•	•	•	•	0	•	0	0	•	•	•
• •		•	• •	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•

Correlation (and covariance): Inuition (How two values vary) The behavior between any two values x and y can be summarized	• 🔫 •		T 0 0	he l	thr	ee	way	ys:	•	• •	•
 1. as x gets larger y typically gets larger too ex: `x=temp on some day` `y=number of people on the beach on the same day` 	• • •	41	S	•	•	• •	•	•	• •	• •	0
- covariance & correlation is positive	► C	60	- 11	Nc	د م	DC:	5.	Se	Æ	٤.	۰
2. as x gets larger y typically doesn't get larger or smaller	F	CA	70	وت	>	TD	•	0	0 0	• •	0
- ex: - `x=individual's favorite number`	•••	•	• •	•	•	• •	0	0	0	• •	0
 `y=number of hot dogs that individual has eaten in their life covariance & correlation is zero 	etime	•	• •	•	•	• •	•	•	•	• •	•
3. as x gets larger, y typically gets smaller	• • •	۰	• •	•	۰	• •	۰	0	•	• •	0
- ex: - `x=average speed of driver on 10 mile commute`	• • •	•	• •	•	•	• •	•	•		• •	•
- `y=average commute time of driver on 10 mile commute`	• • •	۰	• •	•	۰	• •	۰	0	•	• •	0
- covariance & correlation are negative	• • •	•	• •	•	•	• •	•	0	•	• •	•
	• • •		• •			• •	•		•	• •	

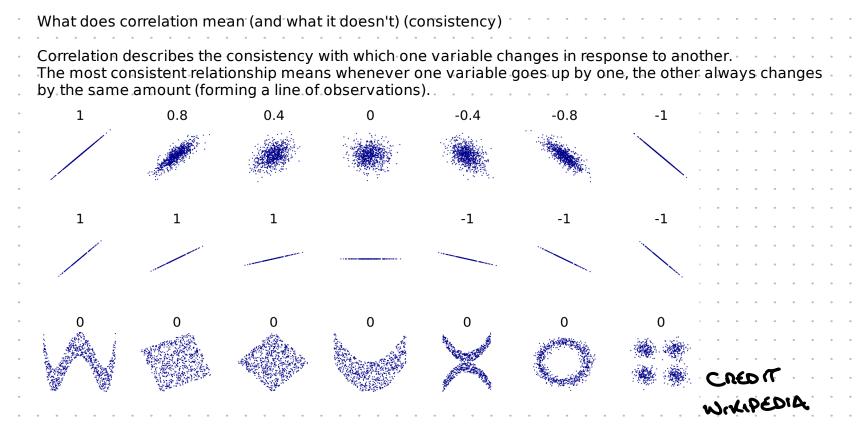
٠	۰	•		۰	•	۰	•	•	۰	•	۰	۰	٠	۰	۰	۰	•	۰	•	•	۰	۰	٠	۰	0	۰			۰	•		٠		۰	۰	٠	٠	۰	۰	0	۰	۰	۰	۰
٠	٠	۰	٠	0		۰	۰	0	•	0	۰		•	٠	۰	٠	0	•	0	۰	٠	•	•	۰	۰	۰		•	٠	۰	•		٠	٠	•	•	٠		٠	۰	•	•	٠	۰
•	٠	٠	٠	۰	۰	٠	٠	۰	۰	0	۰	۰		•	٠	٠	۰	•	0	٠	٠	۰	•	٠	٠	۰	•	•	٠	٠	•	•	٠	٠	۰	•	٠	۰	•	•	۰	۰	•	٠
	۰	۰	٠		•	۰	۰	0	•		•			۰	۰	۰				۰	٠	•		۰	۰	•			۰	۰	۰		•	٠	•	•	۰	۰	۰			•	۰	۰
	•	۰	٠			۰	۰		•		•			•	۰	•		•		۰	۰	•	•	•	۰	•			•	•	•			٠	•	•	۰		۰		•	•	۰	۰
	•	٠	٠	0	۰	٠	۰	0	•		0	•	•		•	•	0	•	۰	۰	٠	0		0	۰	0	۰	•	•	۰	•			٠	•	•	٠	۰	۰	۰	0	0	۰	٠
*	۰	٠	٠	۰	٠	٠	٠	•	•	۰	•	٠	•	٠	۰	۰		•	٠	۰	٠	•	•	•	۰	•	٠	•	۰	٠	•	*	۰	٠	۰	•	٠	٠	۰	٠	•	•	۰	٠
٠	۰	0	٠	0	0	۰	•	0	0	0	0	0	٠	٠	۰	0	0	0	0		۰	0	٠	0		0		۰	۰			٠	۰	۰	0	•	٠	0	۰		0	0	۰	•
•	•	0	۰	0	•	۰	•	0	Ċ		•	. L	- L -			:		•		•	ь. Б.	•	•	•	•	•										•		•	۰	•	•	•	۰	۰
	•	0	۰	0		۰	۰	0	20)	N	VN	acs	S CI	ne	aı	ГГ€	ere	en	ce	De	ecv	v.e	еп		DLI	e	ac	101	n.a	INC		JVé	агі	an	ice		•	۰	•		0	۰	۰
•	۰	۰	٠	0		۰	•	0		0	•		•	•	۰	•	0		0	۰	٠		•	•	۰		•	•		۰	•	•		٠	•	•	۰	•	۰	•		•	۰	۰
٠	۰		٠	0		۰	0	0		0	•			٠	۰	۰	0		0	۰	٠		•	۰	۰	۰		•	٠	۰	۰	•	٠	٠	0	•	٠	•	•	۰		•	•	0
	•	0	۰	0	0	۰	0	0	0	0	0	0	•	۰	۰		0	0	0	•	۰		•	•	•			•	•	•		•		۰	0	•	۰	0	•			•	•	0
•	•	0	۰	0	0	۰	۰	0	0	0	0	0	•	•	•	•	0	0	0	•	۰		•	0	•			•	•	•	•	•	•	۰	0	•	۰	0	•	•		0	۰	0
	•	•	٠	0		۰	۰	0			0		•		•	•	0	•		۰	۰			0	۰		۰	•	•	۰	•		•	۰	0	•	٠	•	۰	•	•	0	۰	•
*	۰	٠	٠	۰	٠	٠	٠	•	•	۰	•	•	•	٠	۰	•		•	٠	٠	٠	•	•	•	٠		٠	•	•	٠	•	*		٠	۰	•	٠	٠	۰	٠	•	•	۰	۰
•	•	•	٠	0		۰	0	0	•	0	0	0		•	•	•	0	•		۰	۰	0	•	•	۰				•	۰		•		۰	0	•	۰	•	۰	۰	0	•	۰	•
•	•	0	۰	0	•	۰	0	0	•	0	0	0	•	•	•	0	0	•		۰	۰	0	•	0	۰	0			•	•		•		0	0	•	۰	•	۰	•	•	•	۰	۰
•	•	0	۰	0	•	۰	۰	0	•		0	•	•	•	۰	•	0	•		۰	۰	•	•	•	۰	•	•	•	•	•	•	•	•	0	0	•	۰	•	۰	•	•	•	۰	۰
	•	٠	٠	0	۰	٠	۰	0	•		0	•	•		•	•	0	•	۰	۰	۰	0		0	۰	0	۰	•	•	۰	•		•	٠	•	•	٠	۰	۰	۰	•	0	۰	۰
٠	٠	۰	٠	0		۰	•	0	•	0	۰		•	۰	۰	٠	0	•	0	۰	٠	•	•	۰	۰	۰		•	٠	۰	•	•	٠	٠	0	•	٠	•	٠	۰	•	•	٠	0

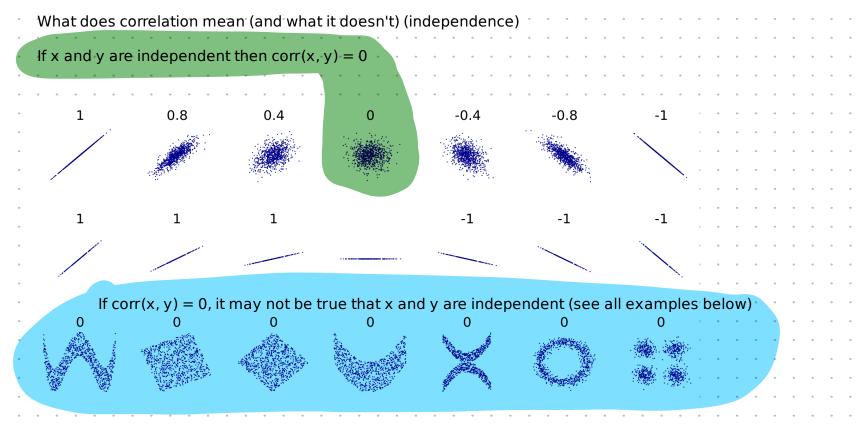
How does scaling X impact Sample Cov(X, Y)?	•	• •	•	• •	0	• •	• •	•	• •
Let c be a scalar while (x_i, y_i) are paired observations.	0	• •	0	• •	0	• •	• •	0	• •
· · · · · · · · · · · · · · · · · · ·	0	• •	0	0 0	0	• •	• •	0	0 0
Sample Cou of $=\frac{1}{N-1} \sum_{i} (C_{Xi} - C_{X})(Y - \overline{Y})$ C_{Xi} AND Yi i As	0	• • • •	•	• •	•	• •	• • • •	•	• • • •
$C_X; A^{NO} Y$ = $C O_{XY}$	•	• •	0	• •	•	• •	• • • •	•	• •
SCALING (SAMPLES OR OUTCOMES)	0	•	•	· · ·	•	B	×4 .	Ċ	· ·
WILL SCALE COJARIANCE BY	•		•	To 	• • •	. (.	• •	•	0 0 0 0
	•	• •	•	• •	•	• •	• •	•	• •

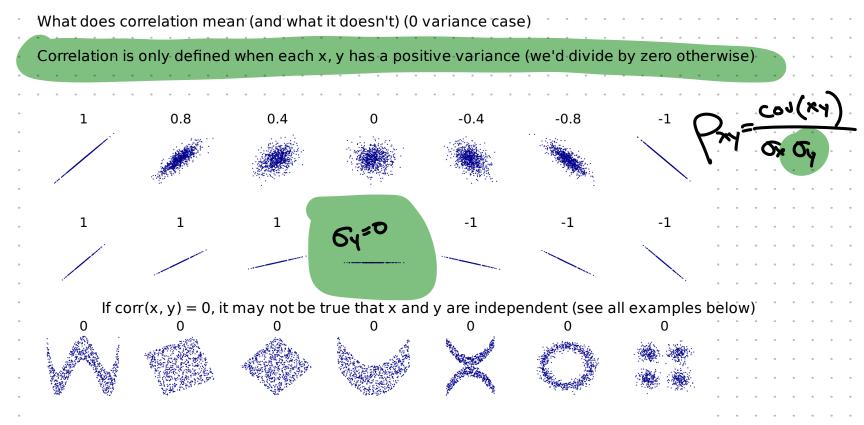
•	۰	۰		
•	•	•	. !!Super big problem!!	
•	۰	۰		
•	0	۰	Changing the units we measure data in will change our covariance scales	
•	•	•	- sample cov(hour study, grade) = 10 - sample cov(min study, grade) = 600	
•	•	•	we shouldn't interpet the magnitude of covariance as a "strength" of correlation!	
0	•	•		
•	۰	0	Covariance measures three things:	
•	•	•	-standard deviation of x	
•	•	•	- standard deviation of y - correlation between x and y (see "intuition" slide above)	
•	٠	•		
۰	٠	•	We want a "scale invariant" way of measuring correlation	
•	•	•		
	•		Scale invariant - a statistic which doesn't change when data is scaled	
0	•	•		
0	۰	0		

	BOUND ON COVATIANCE	• •
	CON(X,Y) = E[(X-E[X])(Y-E[Y])]	D 0 0 0 0 0
· · · · ·	$= \left\{ E\left[\left(x - E\left[x\right]\right)^{3}\right]^{1/3} E\left[\left(x - E\left[x\right]\right)^{3}\right]^{1/3} \right\}$	· · ·
· · · · ·	$p = \sum VAR(x) VAR(y) = Ox Oy$	• •
· · · · ·	CON MAY NOT BE GREATER IN MAGNITUDE THAN GEOMETRIC MEAN OF VAR(X) VAR(Y)	· ·

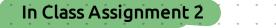
• • • • • • • • • • • • • • • • • • • •	CARSON'S CONDELATION COEFFICIENT
$P_{xy} = \frac{C_{0} \sqrt{(xY)}}{\sigma_{x} \sigma_{y}}$	THEY COULD HAVE? -1 4 PRY 4 (
+ Ox Gy IS MAR COU(KY)	$C_{XY} = \frac{\hat{O}_{XY}}{\hat{O}_{X}\hat{O}_{Y}}$

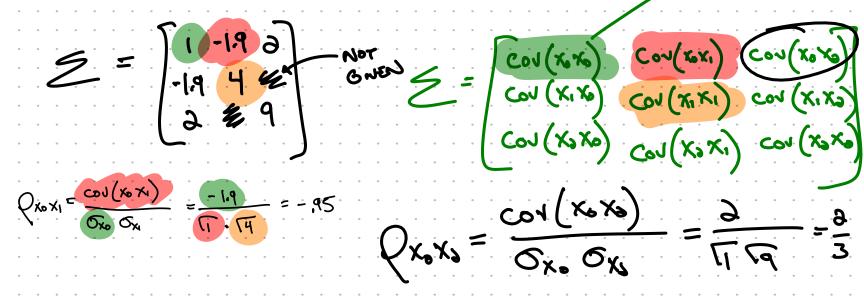

MAX CORRELATION	BOOND (COU (XY) (ST OY
$1 = P_{xy} = \frac{c_{0y}(xy)}{\sigma_x \sigma_y} = 7$	COU (XY) = 0x 6y
	Cov is AS BIG AS Possible Gren Scale OF X AND Y
	N N
All examples have max correlation = 1. This implies then y will always increase by m times that amount.	•


Mis	CORRELATION		OUND CON (XY) & OX OY
- (=	$P_{xy} = \frac{cov(xy)}{\sigma_x \sigma_y}$	-> COU(,	кч) = -0×64
	σχσγ	A	POSSIBLE GWEN
	•	· · · · · · · · · · ·	SCALE OF X AND Y
		,	
	×	×	
-	s have min correlation = 1. This i lways increase by m times that a	-	


ICA 1	•
Compute the sample correlation for the four samples below.	•
Give one sentence which interprets its meaning so a non-technical reader can easily understand.	0
(Right side of the room, scale x by 2 before computing correlation please!)	•
SAMPLE CORR SAMPLE COV	•
$\lambda \times 14$ 10 10 G	•
-1 - 1 - -1 - -1 - 1 - 1 - 1 - 1 -	•
$X[7] \leq [5] 3$	0
$Y_{a} = 3$ $P_{xy} = \frac{1}{2}$	0
	•
	0
SAMPLE STD DEUS	•
	•

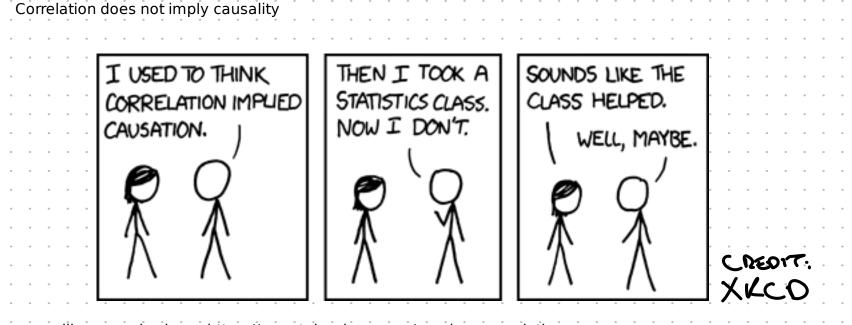
ICA 1 $G_{x}^{*} = \frac{1}{3} \left[(3 - 3)^{*} + (3 - 3)^{*} + (3 - 3)^{*} \right]^{*} = \frac{1}{3}$ Compute the sample correlation for the four samples below.
Give one sentence which interprets its meaning so a non-technical reader can easily understand.
(Right side of the room, scale x by 2 before computing correlation please!)
$X[7]S[5]3$ $\hat{O}_{xy} = \frac{1}{N-1} \sum_{i} (x_i - \bar{x})(y_i - \bar{y}) \stackrel{\text{B}}{=} [\frac{2}{3}]$
$\frac{1}{3} = \frac{1}{3} [(1-5)(2-3) + (5-5)(2-3)$
$\mathcal{O}_{X} = \frac{1}{2} \left(\chi_{i} - \chi_{j} \right)$
$= \frac{1}{3} \left[(7-5)^{2} + (5-5)^{2} + (5-5)^{2} + \frac{1}{3} \left[(7-5)^{2} + (5-5)^{2} + \frac{1}{3} \right] = 8[3]$


•	0	٠	• •	۰	۰	۰	• •	0	۰	۰	• •		۰	• •		• •	٠	• •	۰	• •	0	۰	• •	0	0	• •	•	•	•	•	۰	•	• •	۰
•	٠	٠	• •	0	•	۰	• •	•	٠	٠	• •	•	٠	• •	0	• •	٠	• •	۰	• •	0	٠	• •	•	0	• •	•	٠	•	•	•	•	• •	۰
	۰	•	• •	0	0	•	• •	0		۰	• •	•	•	• •	0	• •	٠	• •	۰	• •	0	۰	• •	0	0	• •	•		•	0	•	•	• •	•
	۰	۰	• •	۰	۰	۰	• •	•	٠	•	• •	•	۰	• •	•	• •	۰	• •	۰	• •		۰	• •	•	۰	• •	• •		•	۰	•	•	• •	۰
•	•	0	• •	0	0	۰	• •	0	•	•	• •		0	• •	0	• •	۰	• •	0	• •	0	•	• •	7	0	• •	• •	•	0	0	0	•	• •	۰
٠	٠	٠	• •	۰	۰	٠	• •	۰	٠	r	ا	•	٠	• •	•	5	1	• •	•			\mathbf{N}	9	•	٠	• •	• •	٠	۰	۰	۰	•	• •	٠
۰	۰	۰	• •	0	•	``\	ſ	۱` A)	ľ.	·	$\sum_{i=1}^{n}$	•	· f		/	' Ý	· _ ·	F	Ţ	к ⁽	. '		-	·	• •	• •	•	۰	•	•	•	• •	۰
٠	•	۰	• •	•	۰	•	J I	-	Ľ	(* 1	Λ.)		Ľ	- ($\langle \cap$	\	·		_	<u>ן</u>) '	•	۱.	• •	• •	۰	۰	۰	۰	•	• •	٠
•	•	•	• •	•	•	•	• •	•	•																					•	•	•		•
																								-			•		V					
		•											•			5	•	7.	0		<u> </u>	5	-	70	Ľ					•				
	•				•	•				•		•		. 1).	ر)	. \ .	-	. 1	-	/.	Χ.						Ļ	•				•
	•													. L		l	Λ.	. \			-			J										
					•		• •		•		• •												• •			•	• •			•				•
		•	• •	•	•	•	• •	•	•	•	• •		٠		0	C		J	•	• •	•		•••••	•	0	• •	• •	•	•	•				•
•	•	•	• •	0	•	0	• •	0	0	0	• •		•	• •	•		0	J	0	• •	0	0	• •		0	• •	• •	•	0	0	0	•	• •	0
•	•	0	• •	0	0	0	• •	•	0	•	• • •	0	0	• •	0		•	J	•	• •	0	0	• • •	0	0	• •	• •	•	0	•	•	•	• • • •	•
0	•	0	• •	0 0 0	•	0	· · ·	0 0 0	•	0 0 0	• • • • • •	0	0 0 0	• •	0 0 0	• •	•	J	•	• •	0 0 0	0 0 0	• • •	0	0	• •		•	0	•	0	•		0
•	•	0 0 0		0 0 0 0	•	0 0 0	• • • • • • • •	0	0 0 0 0	•	• • • • • • • •		0 0 0	• • • •	0 0 0	• •	•		• • •	• •	•	0 0 0	• • • •	0 0 0 0	0 0 0 0	• • •		•	0	•	•	0		0 0 0
•	•	•	• • •	0 0 0 0	• • • •	0 0 0 0		0 0 0 0	0 0 0 0	•	• • • • • • • • •		•	• • • • • •	0 0 0		•		•	· · ·	0 0 0 0 0	0 0 0 0	• • • • • • • • • • • • • • • • • • •	- 0 0 0 0 0	0 0 0 0			0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	•		0 0 0 0
• • • •	•	•		• • • •	• • • • • • • • • • • • • • • • • • • •	0 0 0 0 0	• • • • • • • • • • • •	0 0 0 0 0 0	0 0 0 0 0	•	• • • • • • • • • • •		0 0 0 0	· · ·	0 0 0 0		• • • • • • • • • • • • • • • • • • • •		•	• • • • • • • • •	•	0 0 0 0	• • • • • • • • • • • • • • • • • • •	- • • • •	•			• • • •	0 0 0 0 0	0 0 0 0 0	•	•		0 0 0 0



0		· (·) ·	ر	Ċ	A	S ^c	>	•	P	์ ณิ เ	.A	Ľ	T I	Ċ	શ	۔ و	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	0	0
•	0	Fc	or (ea	ch	pa	air	of	ra	nd	lon	n₊∖	/ar	iak	ble	s b	el	ow	',-€	est	im	at	e p	Dea	ars	on	'S	CO	rre	ela	tio	n. c	00	effi	cie	ent	•	•	•	•	•	•	•	0
•	•	Х	-	#	hc	our	s.s	stu	de	ent	st	uc	lie	s fo	or	fin	al,	У	=	fir	nal	gr	rac	de	of	th	at	st	ud	en	t.	•	•	•	•	•	•	•	•	•	•	•	•	•
0	0	×	-	fa	vo	rite	e n	ur	nb	er	of	st	ud	en	ıt,	y. =	=. 5	stu	de	ent	:'s	be	est	fri	en	d's	s fa	ave	ori	te	nu	m	be	r.	0	•	•	•	•	•	•	•	•	0
0	0	X	• 	hc	W	m	an	y. (- qu	art	er	s c	ne	s s	pe	nd	s a	at s	sul	oe	rm	ar	ke	t, <u>:</u>	у.=	v	vei	igh	nt o	dif	f ir	1 .C	oir	n p	ur	se	@	рı	urc	:ha	ase	5 °	•	•
•	•	×	•	m	ile	s r	un	in	tł	ne.	pa	st	y.e	ar	, у	•	a∖	/er	ag	e :	sp	ee	d. c	of. a	a.r	un	ne	er. o	Sn	a	1.r	nil	e. c	:0L	ırs	e	•	•	•	•	•	•	•	•
•	0	X	•	int	ter	n.e	et.e	exp	olo	rei	r u	sa	ge	ra	te	, у	•	Ċ	vi	d. c	cas	ses	in	۰ IJ	S	(p	er	ye	ar	•	pa	ast	3(D. y	vea	ars)	•	•	0	•	•	•	0
•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	۰	0	۰	۰	0	٠	0								۰	•	•	0	0	۰	۰		۰	٠	۰	٠	۰	٠	۰	•	٠		•	•				٠	٠	٠	٠	٠	•
0	0	0	0	•	•	•	•	•	•	0	0																												•		•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

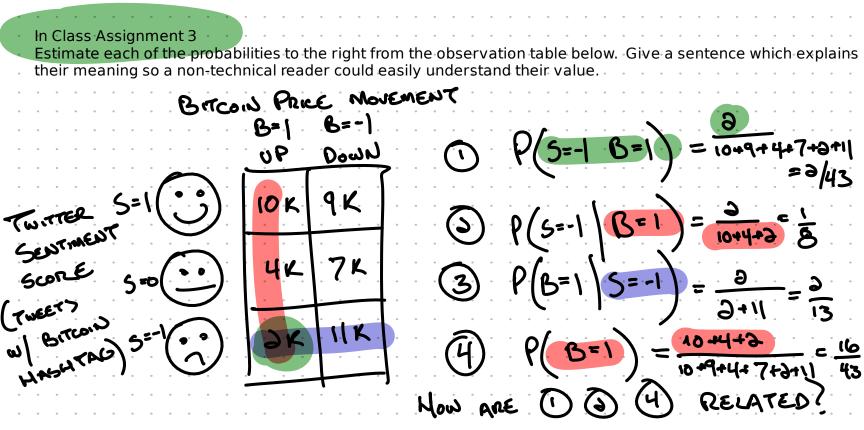
Compute correlation between X_0, X_1

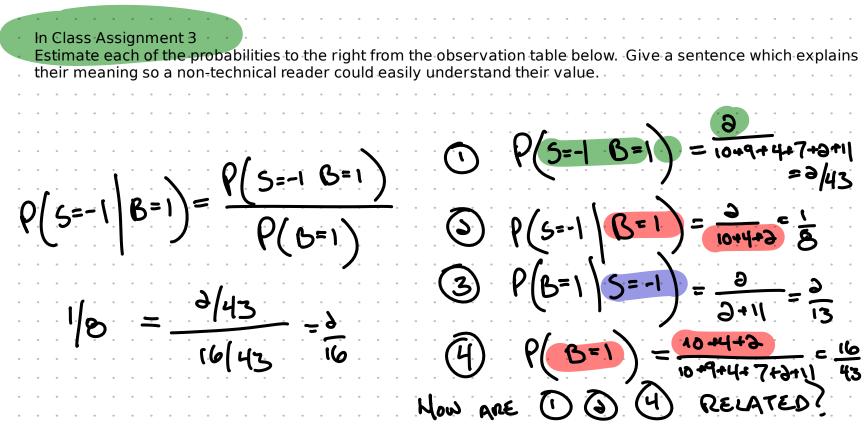

Which feature shows the most consistent relationship with X_0: X_1 or X_2?

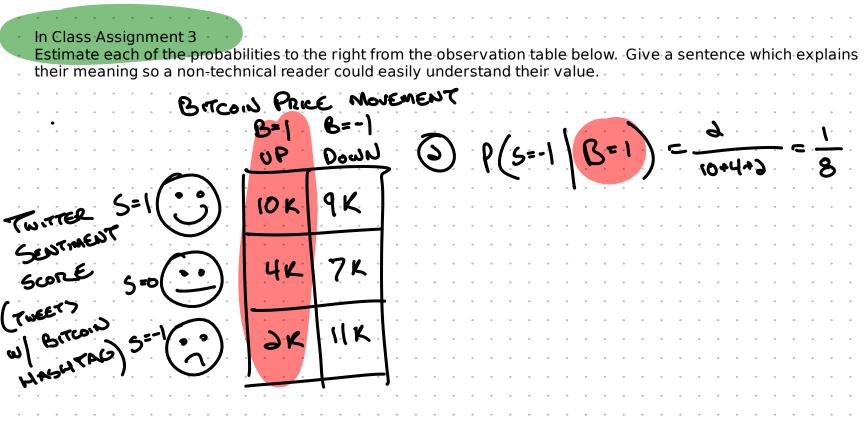
ΥX

VAR(X)= Or

Ox Oy


see silly examples here: https://www.tylervigen.com/spurious-correlations


all these correlations are indeed non-zero and show some relationship between variables, though we shouldn't expect that changing x necessarily impact y (discuss titanic hw problem)


•	٠	۰	•	۰	٠	۰	•	٠	۰		۰	•	•		۰	۰	۰			٠	۰	٠	۰	۰	٠	٠	٠		۰	۰	۰			۰	۰		۰	۰	٠	۰	٠		۰	۰
٠	٠	٠	•	٠		٠	•	٠	۰	٠	٠	٠	۰	٠	٠	٠	•		٠	•	•	•	۰	۰		•			*	٠	٠		٠	٠		٠	۰	۰	*	٠		٠	٠	٠
•	٠	٠	•	•	•	٠	•		•	٠		•	•	۰	•	٠	•		۰	•	•	•	•	•	•	•		•	•	٠	•		•	•	٠		•	•	•			۰	٠	۰
•	•	٠	•		•	۰	•	٠			0		•		۰	0			•	۰				•	۰	۰			۰	0	۰			۰	٠		•	•	۰				۰	۰
•	•	٠	•		•	•	•	۰	•		0	0	•		0	0				۰	•		•	•	•	•		•	•	0	0			•	۰	•	•	•	•	•			0	۰
	•		•			٠	•	٠		٠	۰	٠	•	٠	٠	۰	•		٠	٠	٠	•	•	۰		٠				۰	٠			۰		٠	•	۰				٠	٠	•
٠	٠	•	•	•		٠	•	٠	٠	۰		٠	•	۰	٠	٠	•		٠	٠	•	•	•	٠						٠	٠			٠			•	•				٠	٠	٠
	•	0	•	٠		•	•	٠	0	•	•		•	0		0			0	•		•	•	•						•				•	0		•	•					۰	•
•	•	0	0		•	0	0		0	0	•		0	0	•	۰			0	•	•	•	•	•	•				•	•				•	0		•	•	•				۰	0
0	0	0	0	٠	•	0	0	٠	0	0	•	۰	0	В	av	es	Ru	le a	<u>د</u> ، (Cor	ndit	ior	nal	Pr	oba	abi	lity	/ •	•	•	•	•		۰	0		0	•	•		•		•	0
•	•	•	0	•	•	0	0	٠	0	•	•	•	0			۰	•		0	•	•	•		•	•	•	•	-	•	۰	•	•		•	0	•	•	•	•		•		۰	۰
•	•	٠	0			٠	•		0	۰	•			۰	•	٠	•		•	•	٠	•		٠	•	•			•	۰	•			٠	٠		•	٠	•				۰	٠
	•	۰				۰	•		0	•					•	۰	•				•	•		•	•					•				۰	•		•	•	•				•	۰
	•	•			•	0	•		0		•	•			•	۰	•		0	•	•	•		•	•	•	•	•	•	•	•	•	•	•	0		•	•	•		•		•	۰
	•	•	•			٠	•	٠		•	•	٠			۰	۰	•					•		•	٠	۰				۰	•			۰	٠			•	٠			•	۰	٠
•	٠	٠	•	•	•	٠	•		•	•	•		•	٠	•	٠	•		٠	•	•	•	•	•	•	•			•	٠	•		•	٠	٠		•	•	•	•		•	٠	•
•	٠	٠	•			٠	•		•	•	•		•	٠	•	٠	•		•		•	•		•	•	•			•	•			•	•	٠		•	•	•			•	•	٠
	•										•				•					•				•						•			•	۰					•				٠	•
	•	0	•			0	0		0	0	0		•	0	•	•			0	•	•			•	•					0	0			•	0		•	•	•				•	0
	•		•			•	•		•	0			•	0		۰			•					•						•				•			•	•					•	0
	•	•	•		•	0	•			•	•				•	٠	•						•	•						•				•			•	•	•				•	•

Conditional Probability (intuition / definition)
Whats the probability that a person has covid? $P(c=i)$
$\mathbf{r} = \left(\mathbf{r} + \mathbf{r} \right)$
Whats the probability that a person has covid given a positive antigen test?
$P(C=\{ A=1\})$
Whats the probability that a person has covid given a negative antigen test?
Whats the probability that an antigen test is negative given a person has covid?
Whats the probability that an antigen test is positive given a person doesn't have covid?
P(A=1 P=0)
A conditional probability gives the probability of one event given that another has occured.
Let C be a random variable representing whether a person has covid (1=covid, 0=no covid) Let A be a random variable representing whether that person's antigen test is positive (1=positive, 0=negative

Conditional Probability (algebraic definition)	· · · · · · · · · · · · · · · · · · ·
PROB A HAPPEN'S Given B ALGENON	> PROB A, B HAPPEN
PROIS B ALEENPY	TOBETHER
where $P(A B) = \frac{P(A B)}{2}$	
\mathbb{P}	(B) - D PROB B WAPPENS
A=1 LETTER ON SOCKS =0 otherwise	. .
B= 1 RIGHT SIDE CLASS D DTHEMNISE	· ·

