

CS 2810: Mathematics of Data Models, Section 1

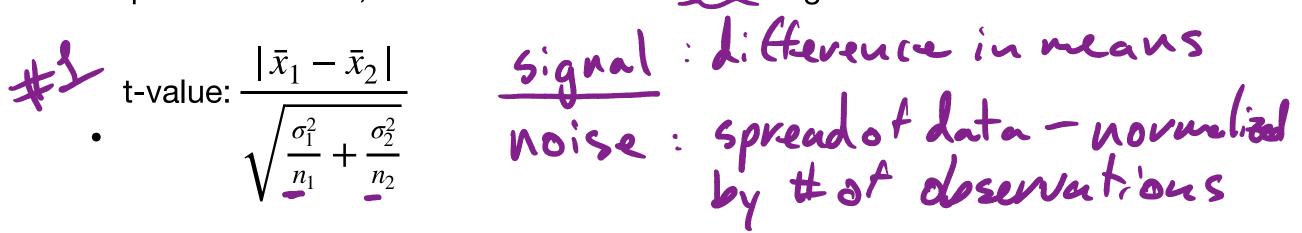
Spring 2022 — Felix Muzny

What is your hypothesis and null hypothesis for the following question?

t-tests, errors, bias

Question: Does the orange line experience longer delays than the red line?

One-tailed two-tailed & we don't care we came about any difference in population 9 2 then


Student's t-test

- Question: Is there a <u>change in student</u> test scores based on whether or not they listen to music beforehand?
- Hypothesis: $H_0: \mu_{music} = \mu_{nomusic}$

- Observations:
 - music: [97, 90, 91, 92]
 - no music: [95, 94, 89, 90]

Student's t-test

• To perform a t-test, we need to calculate two things:

+-value >t-value

- \bar{x}_1 and \bar{x}_2 are the sample means
- σ_1^2 and σ_2^2 are the sample variances
- n_1 and n_2 are the number of observations in each sample

Student's t-test

• To perform a t-test, we need to calculate two things:

t-value:
$$\frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$
• Then, we'll use this to calculate the p-value using two factors

- degrees of freedom $(n_1 + n_2) 2$
- how many tails our test has random chance
 Up affect how pis distributed

obseve

Deale t-value

2) calc p-value from the t-value, deg of freedom, tailedness

3) 0.03 p-threshold: 0.02 - do not reject P 0.05 - reject the null chosen iv advance

ICA Question 1: t-test using a spreadsheet

Using the observations given and a spreadsheet (excel or google sheets, for instance), calculate the **t-value** using the below equation:

t-value:
$$\frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$
 0.2335 97 95

90

91

92

94

89

90

- \bar{x}_1 and \bar{x}_2 are the sample means
- σ_1^2 and σ_2^2 are the sample variances
- n_1 and n_2 are the number of observations in each sample

ICA Question 1, continued: t-test using a spreadsheet

Using the observations given and a spreadsheet (excel or google sheets, for instance), calculate the **t-value.**

Given your t-value, does this test allow us to reject the null hypothesis at a p-value of 0.10? $0.2356 \angle 1.440 \rightarrow No$.

(look your result up against a t-table, such as <u>https://www.itl.nist.gov/div898/</u> <u>handbook/eda/section3/eda3672.htm</u>)

ft-value had been 15, Ne Know p-value is between

	Drobobility	loca th	on the e
	Probability		
p-vau			•
V	0.90	0.95	0.975
1.	3.078	6.314	12.706
2.	1.886	2.920	4.303
3.	1.638	2.353	3.182
4.	1.533	2.132	2.776
5.	1.476	2.015	2.571
6.	1.440		2.447
7.	1.415		
8.	1.397	1.860	2.306
9.	1.383	1.833	
10.	1.372		2.228
	_	\mathbf{h}	
		T	
		the <e< td=""><td></td></e<>	
•	907		7-values

ICA Question 1, continued: t-test using a spreadsheet

• What happens to your values if your observations were:

p-value: 0.0027	music	no music
	97	85
reject H.	90	84
	91	79
	92	80

T-tables D)go to the row w/ nituz-2 degrees of freedom

2) find the value at your p-threshold 3) if your t-value is greater than the listed t-value, reject Ho

ICA Question 1, continued: t-test using a spreadsheet

• What happens to your values if your observations were:

Reminders: tailed-ness and tests

ICA Question 2: t-test using python

Using the observations given and **python**, calculate the **<u>t-value</u> using the below** equation:

t-value:
$$|\bar{x}_1 - \bar{x}_2|$$
9795• $\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$ 9094• \bar{x}_1 and \bar{x}_2 are the sample means9189• σ_1^2 and σ_2^2 are the sample variances9189• n_1 and n_2 are the number of observations in each sample9290

T-tests and errors

• Sometimes, a t-test will produce an error.

• Question: Is there a change in student test scores based on whether or not they listen to music beforehand?

T-tests and errors

- Question: Does fertilizer A have an effect on crop yield on my spinach farm?
- Field 1: no fertilizer
- Field 2: fertilizer

Type 1 errors

- Type 1 error (false positive): test says that you have covid but you don't
- Type 1 error (for a t-test): Reject the null hypothesis when you shouldn't
 - Claim that field two has a higher yield when in fact it doesn't

Logo spend \$\$\$ on a fertilizer that doesn't work

Type 2 errors

- Type 2 error (false negative) : test says that you don't have covid but you actually do
- Type 2 error (for a t-test): Failing to reject the null hypothesis when you should reject it
 - Claim that both fields have the same yield when in fact they don't
 Lo use default fiert, end up w/ lower
 crop yield
 W spend 44 testing other fiert.

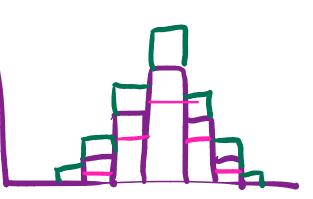
Family wise error

- Family-wise error (for t-tests): probability of making one or more false positives (type 1 errors) when performing multiple t-tests
 Coreject H.
- We want to know whether or not using a certain fertilizer increases our crop yield on our spinach farm.
- Each week, we measure the crops in two fields and perform a t-test to determine whether no fertilizer or fertilizer is better.

ICA Question 3: errors on the dance floor

If I have a Family Wise Error rate of 2.5% and I perform one test every week between my spinach fields:

What is the meaning of a type 1 error for this context? Up (aim that the fert. is effective when


What is the probability that I get any type 1 errors over the course of one season (13 weeks)?

ICA Question 4: playing with significance testing

Go to <u>https://rpsychologist.com/d3/nhst/</u>. Select "Solve for?" -> "d"

What does alpha correspond to?

What effect does changing the sample size have?

Tolerances & power & t-tests

- alpha: whatever you set the p value to be less than in order to reject the null hypothesis
 - (higher alpha means more likely to reject the null, more type 1 errors)
 - (lower alpha means more likely to not reject the null, more type 2 errors)
- power is likelihood of detecting the true effect if there is one
 Duot courses in this class Dtell you sample size
 Effect size: how large is the difference between the two populations needed

t-tests and experimental bias

- Question: Do students at Northeastern enjoy computer science more than students at BU?
- Methodology:
 - Felix surveys students at Northeastern by standing between Snell Library & Engineering and stopping the first 100 students.
 - Felix surveys students at BU by standing in front of the Booth Theater and stopping the first 100 students.
- · location Dane there more STEM students in one place thin the other · not randomized · time of day

t-tests and experimental bias

• Places to watch out for:

harking/p-hacking

- p-hacking is the term in the scientific community that refers to when researchers "go hunting" for statistically significant results after having already performed the experiments
- also known as "harking": Hypothesis After Results Known

- Recommended listening (podcast):
 - Maintenance Phase: "School Lunches, P-hacking and the Original "Pizzagate""

harking/p-hacking

- For example, we have have started with the question "Is there a change in student test scores based on whether or not they listen to music beforehand?"
- We surveyed students and asked them:
 - Whether or not they listened to music before a test
 - you eat breakfast? ndid you getup?

1. ators

more quest

harking/p-hacking

- For example, we started with the question "Is there a change in student test scores based on whether or not they listen to music beforehand?"
- We surveyed students found that the p-value of "music" vs. "no music" was 0.055, but our threshold was 0.05. What now?

Schedule

Turn in ICA 18 on Canvas (make sure that this is submitted by 2pm!)	 ŀ
	•

Test 3 is in class on Thursday!

-> note that if an emergency arises that you *must* email me by the end of Thursday for makeup accommodations

11

Review (virtual) on Wednesday at 2pm (link on Canvas/Piazza)

Mon	Tue	Wed	Thu	Fri	Sat	Sun
March 28th Lecture 18 - t-tests, errors, experimental bias	Felix OH Calendly	Felix OH Calendly test 3 review @ 2pm	Felix OH Calendly Test 3			HW 7 due @ 11:59pm
April 4th Lecture 19 - chi- square test, multiple comparison correction	Felix OH Calendly	Felix OH	Felix OH Calendly Lecture 20 - covariance, correlation			

More recommended resources on these topics

- Student's t-test: Youtube, Bozeman Science, Student's t-test
- t-table: https://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm
- p-values from t-scores in python: <u>https://www.statology.org/p-value-from-t-score-python/</u>
- type 1 and type 2 errors: <u>https://www.scribbr.com/statistics/type-i-and-type-ii-errors/</u> <u>#:~:text=In%20statistics%2C%20a%20Type%20I%20error%20means%20rejecting%20the%20null,hypothes</u> <u>is%20when%20it%27s%20actually%20false</u>
- p-hacking:
 - https://podcasts.apple.com/us/podcast/school-lunches-p-hacking-and-the-original-pizzagate/ id1535408667?i=1000529447507
 - <u>https://statisticalbullshit.com/2017/07/17/p-hacking/</u>
 - <u>https://www.upgrad.com/blog/what-is-p-hacking/</u>