covariance, correlation
If you'd like to, go play around with:
https://tylervigen.com/spurious-correlations
What are two things that have a positive correlation in your experience?
LD amount of time on HW + amount of $\#$ I on takeout
Lotime studying t time at the gym lo negative correlation

Covariance

- A covariance measurement tells us about how two random variables vary together.
-variance told us a bout 1 r.v.
-no claims about correlation or causation

Covariance

- A covariance measurement is calculated with the formula expected of X

$$
\begin{gathered}
\cdot \operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])] \\
\text { Y.U.s vale of }
\end{gathered}
$$

- For a specific sample of data points, this becomes:
$1 \quad$ individual data points
. $\hat{\sigma}_{x, y}^{2}=\frac{1}{N-1} \sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
N: number, of paired
中
actually veer this calculation data points

Covariance

$$
\begin{aligned}
& \left.\bar{x}=\frac{(2+3+4+6}{4}\right)=3.75 \\
& \bar{y}=3.25
\end{aligned}
$$

$$
\frac{1}{N-1} \sum_{i}^{\text {of }}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \frac{1}{4-1}+((2-3.75)(2-3.25)+(3-3.75)(25-35)=1.91
$$

$$
\bar{x}=3.75
$$

Covariance $\quad \bar{y}=$ was 3.25, now 3250

$$
\frac{1}{3}\left((2-3.75) \frac{(2000-3250)}{401000}+\ldots\right. \text { ines what we had before }
$$

ICA Question 1: Calculating Covariance

Calculate the covariance for the given data points.

ICA Question 2: Calculating Covariance
Give an example data set for which the covariance is 0.

$$
\hat{\sigma}_{x, y}^{2}=\frac{1}{N-1} \sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

- the slope of the line is 0 Lo one of our vars.

	1	2	3	4
x	1	7	-3	2

- if for every point there is an "opposite" point

Covariance

- Positive covariance = relationship w/ pos. slope
- Negative covariance = leg. slope
- $z e r o$ covariance $=$ no relationship
- Covariance is sensitive to the scale of the underlying data
- The magnitude of the covariance tells us nothing about the slope of the line and nothing about the degree of fit to the line

Covariance

- Some properties of covariance:
- The covariance of a variable with itself is equal to its variance
- $\operatorname{cov}(X, X)=\operatorname{Var}(X)=\sigma_{X}^{2}$
- Random variables whose covariance is zero are uncorrelated, but not
necessarily independent
- Random variables that are independent have a covariance of zero if you get above 100 on a test, I'll give you a gold star

Covariance Matrices

- Given two (or more) variables, we can define a matrix to contain information about the linear relationships between these variables
- The diagonal in a covariance matrix is the variance of the variables

Covariance Matrices

- Same deal when we have more than two variables

ICA Question 3: Covariance Matrices

ICA Question 4: Covariance Matrices

What might the scatter plot for the given covariance matrix look like?

ICA Question 5: Covariance Matrices

What might the scatter plot for the given covariance matrix look like?

$$
\begin{aligned}
& \text { pos cov = } \\
& \text { pos slope } \\
& \text { neg cove }= \\
& \text { neg slope }
\end{aligned}
$$

ICA Question 6: Covariance Matrices

What might the given covariance matrix be for the given data?

Correlation - Pearson's Correlation

- Correlation measures the "goodness of fit" about the line that we can draw through the points in our data set

Correlation

- Correlation of positive one means that we can draw a straight line with a positive slope through all of the points
- it tells us nothing about the steepness of the line
- Any two points always have a correlation of:

$$
1 \text { or }-1
$$

- The more data that we have, the more confidence we can have in our predictions, but the correlation number doesn't explicitly tell you how much data you have

Correlation

- Covariance \qquad is sensitive to the scale of the data
- Correlation \qquad is not sensitive to the scale of the data
\qquad \longrightarrow (also indicates goodness of fit)

Correlation

- Correlation always produces a number in the range of: $[-1,1]$
- If a straight line cannot go through all of the data points, the correlation gets clocer to zero

Correlation

- Calculating Pearson's Correlation Coefficient:

- This will produce a correlation of 0 if:
$L_{\square} \operatorname{cov}(X, Y)$ is 0

ICA Question 7: correlation

$$
\text { correlation }=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}
$$

What is the correlation coefficient for A and B?

$$
A, B=\frac{0.25}{\sqrt{0.25} \sqrt{1}}=0.5
$$

Which line would we "trust the most" for making a prediction of one variable based on the other?

$$
\begin{aligned}
& A, B=0.5 \\
& A_{,} C=-0.62 \\
& B_{1} C=-0.99
\end{aligned}
$$

	\mathbf{A}	\mathbf{B}	C
\mathbf{A}	0.25	0.25	-1.25
\mathbf{B}		1	-4

C

Correlation

- Correlation is still tricky to interpret!
- A line with a correlation of 0.9 might be twice as good to make predictions with as a line with the correlation 0.64 , for instance
- (We'll talk about this more when we talk about $\mathrm{R}^{\wedge} 2$)
- Want to know how much to trust your correlation?
- Calculate a p-value!
\rightarrow yes, but how much data?
- We actually do this by getting the t-score and then calculating the p-value the same way we did before-looking up where we are in the t-distribution
Drakes into account "how much data"

Admin

- Test 4: if you have a conflict because of Eid celebrations, send Felix an email now so that we can get you set up with an alternate time

Schedule

Hw 8 is released

Turn in ICA 20 on Canvas (make sure that this is submitted by 2 pm !) - passcode is "hi"
Test 4: May 4th from 1-3pm in Snell Engineering 108

Mon	Tue	Wed	Thu	Fri	Sat	Sun
April 4th Lecture 19 - chi-square test, multiple comparison correction	Felix OH Calendly	Felix OH Calendly	Felix OH Calendly Lecture 20 - covariance, correlation			
April 11th Lecture 21 - conditional probabilities, bayes	Felix OH Calendly	Felix OH Calendly	Felix OH Calendly Lecture 22 - conditional ind., bayes nets			HW 8 due @ 11:59pm
April 18th No lecture - Patriot's Day	Felix OH Calendly	Felix OH Calendly	Felix OH Calendly Lecture 23 - Regression: R^{\wedge} 2 \& F			
April 25th Lecture 24 - presentations, wrap-up Mini-project due @ 11:45am		HW 9 due @ 11:59pm				

More recommended resources on these topics

- Some slightly aggressive youtube videos (there's a lot of "bam!" sound effects?)
- StatQuest: Covariance, Clearly Explained!!!
- StatQuest: Pearson's Correlation, Clearly Explained!!!
- YouTube: Brandon Foltz, Statistics 101: The Covariance Matrix
- Website: Statology: How to find the p -value for a correlation coefficient in Excel

