

CS 2810: Mathematics of Data Models, Section 1

Spring 2022 — Felix Muzny

covariance, correlation

If you'd like to, go play around with:

https://tylervigen.com/spurious-correlations

What are two things that have a positive correlation in your experience?

Covariance

• A **covariance** measurement tells us about how two random variables vary *together*.

Covariance

• A covariance measurement is calculated with the formula

•
$$cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$

• For a specific sample of data points, this becomes:

$$\hat{\sigma}_{x,y}^2 = \frac{1}{N-1} \sum_{i} (x_i - \bar{x})(y_i - \bar{y})$$

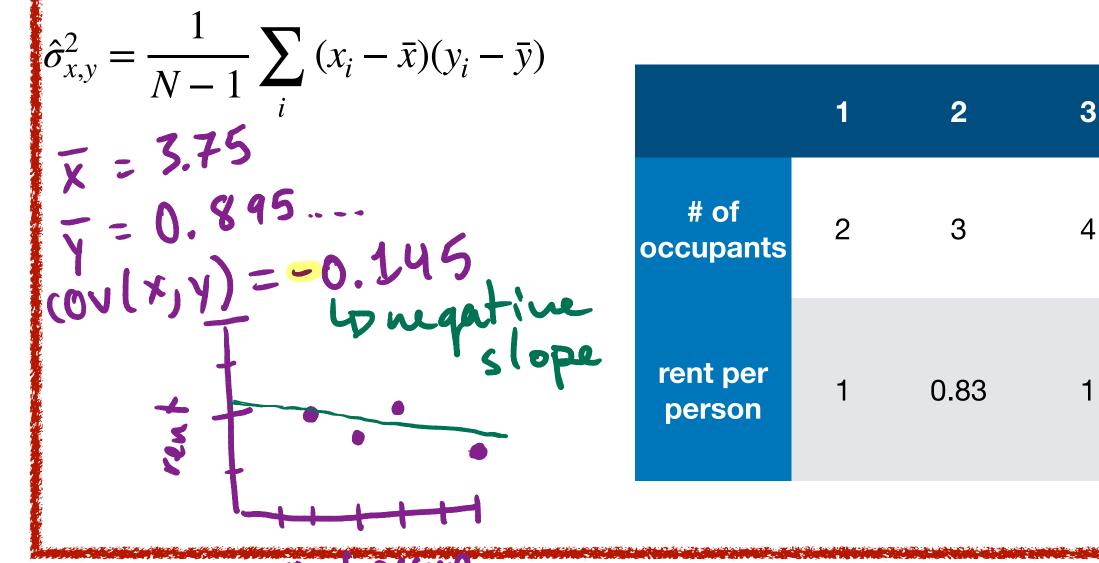
Actually use this calculation N: number
of paived
data points

Covariance $\bar{X} = \frac{(2+3+4+6)}{4} = 3.75$						
J = 3.2	5					
		1	2	3	4	
	# of bedrooms	2	3	4	6	
	rent	2	2.5	4	4.5	
$\frac{1}{N-1} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \frac{1}{y-1}$	j (12-3.75 j +	5)[2-3	3.25)+) =	(3-3.7 1.91	-5)(2.5-3,25) -	

Covariance $\bar{\chi} = 3.75$ $\bar{\chi} = was 3.25$, now 3250 $\cos(\chi, \chi)$ was 1.91, now <u>1910</u>							
4500			1	2	3	4	
7 3250		# of bedrooms	2	3	4	6	
2000	3.75	rent	2000	2500	4000	4500	
$\frac{1}{3} \left((2-3.75) (2000 - 3250) + \dots \right)$ $\frac{1}{3} \left((2-3.75) (2000 - 3250) + \dots \right)$ $\frac{1}{3} \left((2-3.75) (2000 - 3250) + \dots \right)$							

ICA Question 1: Calculating Covariance

Calculate the covariance for the given data points.



Δ

6

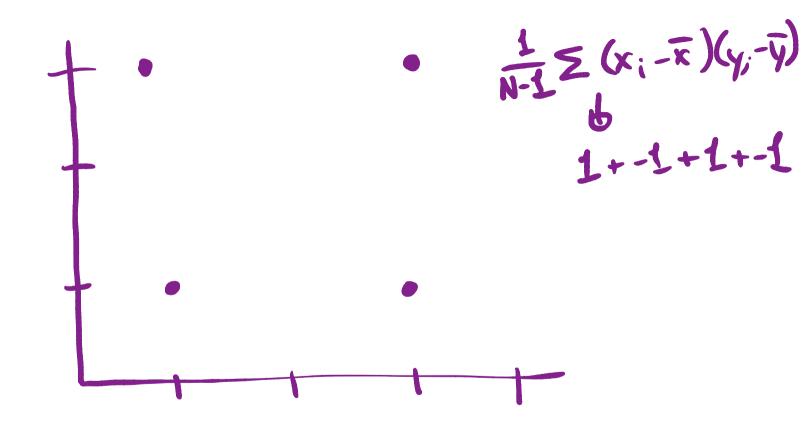
0.75

ICA Question 2: Calculating Covariance

Give an example data set for which the covariance is 0.

$$\hat{\sigma}_{x,y}^2 = \frac{1}{N-1} \sum_{i} (x_i - \bar{x})(y_i - \bar{y})$$

$$\frac{1}{N-1} \sum_{i} (x_i - \bar{x})(y_i - \bar{$$



Covariance

- Positive covariance = relationship w/pos. glope
- Negative covariance = Mg. Sope
- zero covariance = <u>No relationship</u>
- Covariance is <u>sensitive</u> to the scale of the underlying data
- The magnitude of the covariance tells us <u>nothing</u> about the slope of the line and <u>Nothing</u> about the degree of fit to the line

Covariance

- Some properties of covariance:
 - The covariance of a variable with itself is equal to its variance

•
$$cov(X, X) = Var(X) = \sigma_X^2$$

- Random variables whose covariance is zero are uncorrelated, but not necessarily independent
- Random variables that are independent have a covariance of zero

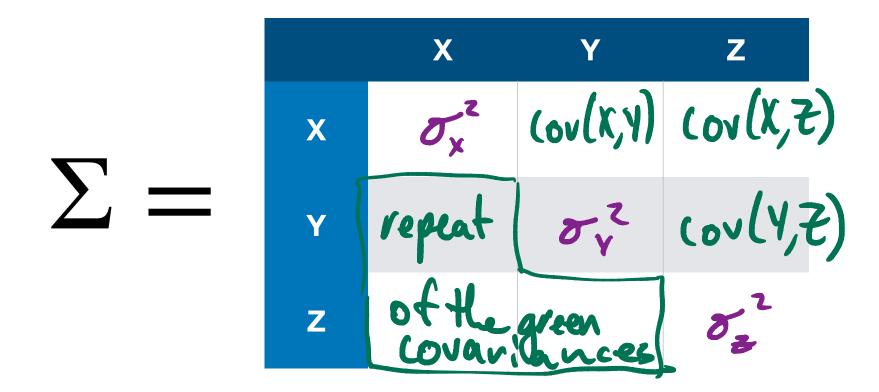
Covariance Matrices

- Given two (or more) variables, we can define a matrix to contain information about the linear relationships between these variables
- The diagonal in a covariance matrix is the variance of the variables

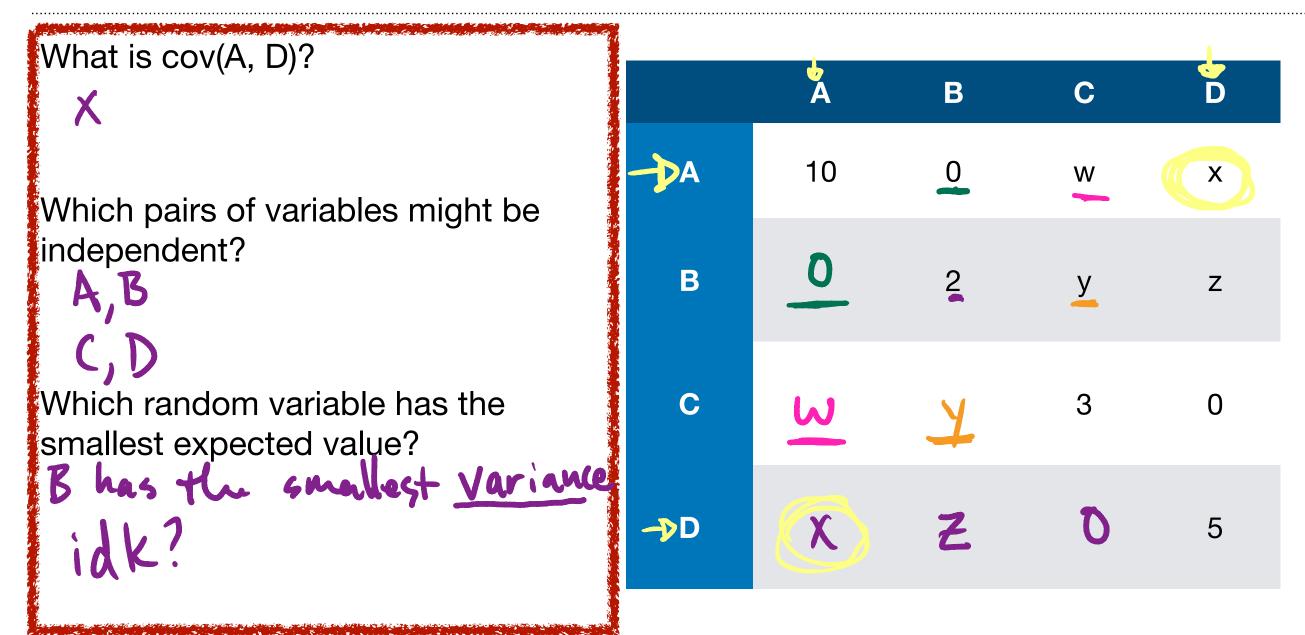
$$\sum = \frac{x}{\omega(x,x)} \frac{x}{\omega(x,y)} \frac{x}{\omega(x,y)}$$

Covariance Matrices

• Same deal when we have more than two variables

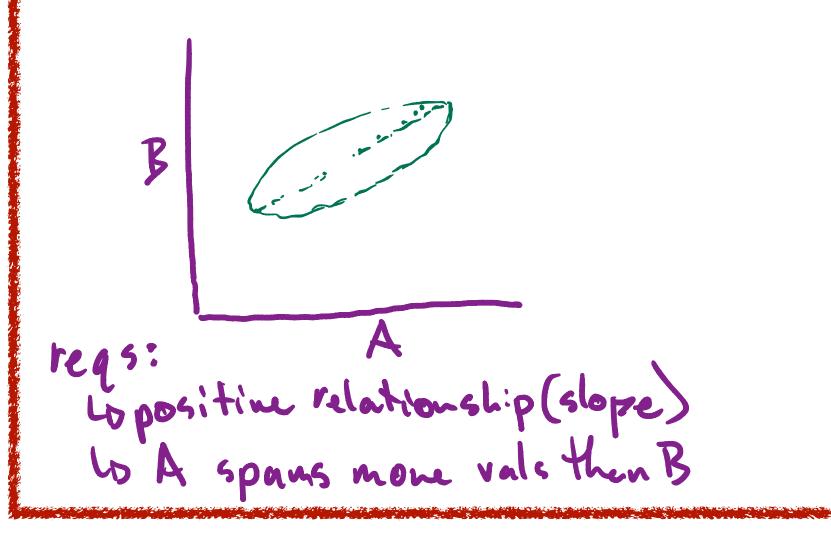


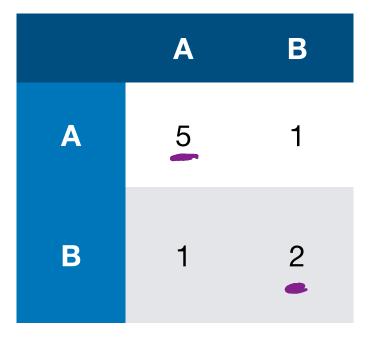
ICA Question 3: Covariance Matrices



ICA Question 4: Covariance Matrices

What might the scatter plot for the given covariance matrix look like?





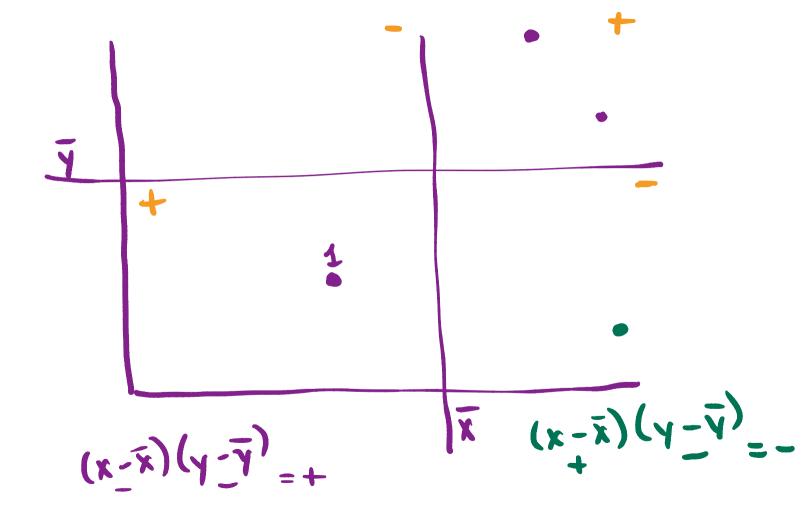
ICA Question 5: Covariance Matrices

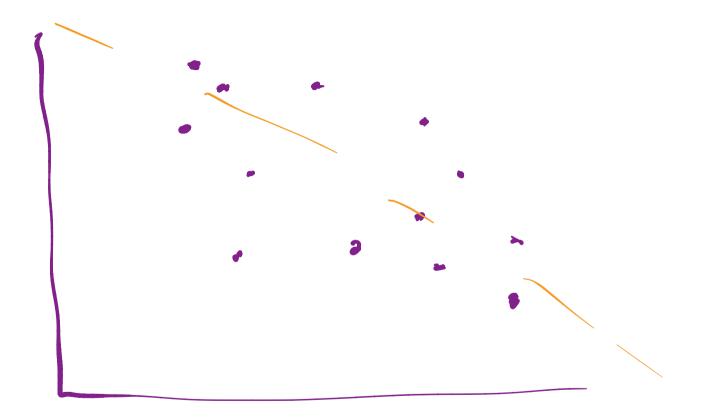
R

What might the scatter plot for the given covariance matrix look like?

Pos cov = pos slopa heg cov = heg slope

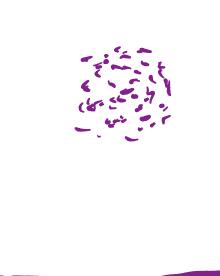
	Α	В
Α	2	-4
В	-4	2

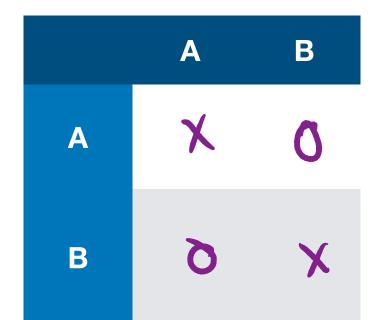




ICA Question 6: Covariance Matrices

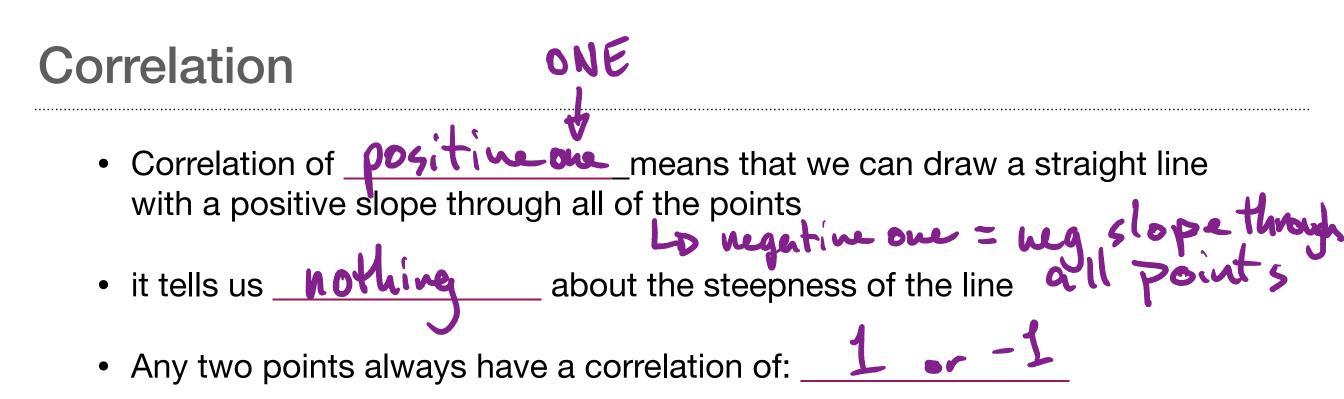
What might the given covariance matrix be for the given data?



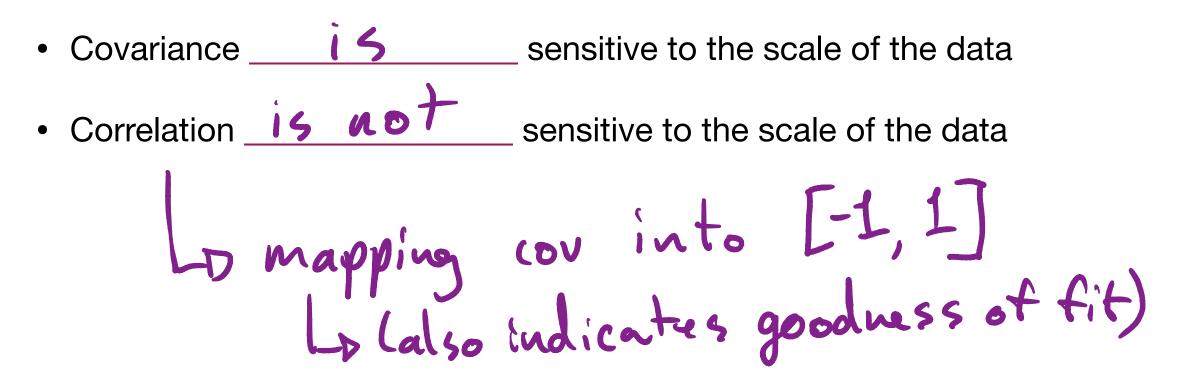


Correlation - Pearson's Correlation

 Correlation measures the "goodness of fit" about the line that we can draw through the points in our data set



 The more data that we have, the more confidence we can have in our predictions, but the correlation number doesn't explicitly tell you how much data you have



- Correlation always produces a number in the range of: [-1, 1]
- If a straight line cannot go through all of the data points, the correlation gets <u>course</u> for Zero

- Calculating Pearson's Correlation Coefficient:
- $\frac{cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}} \approx \frac{direction}{\sqrt{Var(X)}\sqrt{Var(Y)}} \approx \frac{1}{\sqrt{Var(X)}\sqrt{Var(Y)}} \approx \frac{1}{\sqrt{Var(X)}} \approx \frac{1}$
- This will produce a correlation of 0 if: b cov(X, Y) is 0

ICA Question 7: correlation

cov(X, Y)correlation = $\sqrt{Var(X)}\sqrt{Var(\overline{Y})}$ What is the correlation coefficient for A and 0.25 **B**? = 0.5 Which line would we "trust the most" for making a prediction of one variable based on the other? -0.62

	Α	В	С
A	0.25	0.25	-1.25
B		1	-4
С			16.3

 \bullet

• Correlation is still tricky to interpret!

Calculate a p-value!

- A line with a correlation of 0.9 might be twice as good to make predictions with as a line with the correlation 0.64, for instance
 - (We'll talk about this more when we talk about R^2)
- Want to know how much to trust your correlation?

 We actually do this by getting the t-score and then calculating the p-value the same way we did before—looking up where we are in the t-distribution
 Dtakes into account "how much data"

Admin

• Test 4: if you have a conflict because of Eid celebrations, send Felix an email **now** so that we can get you set up with an alternate time

Schedule HWB is released

Turn in ICA 20 on Canvas (make sure that this is submitted by 2pm!) - passcode is "hi"

Test 4: May 4th from 1 - 3pm in Snell Engineering 108

Mon	Tue	Wed	Thu	Fri	Sat	Sun
April 4th Lecture 19 - chi-square test, multiple comparison correction	Felix OH Calendly		Felix OH Calendly Lecture 20 - covariance, correlation			
April 11th Lecture 21 - conditional probabilities, bayes	Felix OH Calendly		Felix OH Calendly Lecture 22 - conditional ind., bayes nets			HW 8 due @ 11:59pm
April 18th No lecture - Patriot's Day	Felix OH Calendly	Felix OH Calendly	Felix OH Calendly Lecture 23 - Regression: R^2 & F			
April 25th Lecture 24 - presentations, wrap-up Mini-project due @ 11:45am		HW 9 due @ 11:59pm				

More recommended resources on these topics

- Some slightly aggressive youtube videos (there's a lot of "bam!" sound effects?)
 - StatQuest: Covariance, Clearly Explained!!!
 - StatQuest: Pearson's Correlation, Clearly Explained!!!
- YouTube: Brandon Foltz, Statistics 101: The Covariance Matrix
- Website: Statology: How to find the p-value for a correlation coefficient in Excel