

CS 2810: Mathematics of Data Models, Section 1

Spring 2022 — Felix Muzny

# covariance, correlation

If you'd like to, go play around with:

https://tylervigen.com/spurious-correlations

What are two things that have a positive correlation in your experience?

#### Covariance

• A **covariance** measurement tells us about how two random variables vary *together*.

#### Covariance

• A covariance measurement is calculated with the formula

• 
$$cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$

• For a specific sample of data points, this becomes:

$$\hat{\sigma}_{x,y}^2 = \frac{1}{N-1} \sum_{i} (x_i - \bar{x})(y_i - \bar{y})$$
  
Actually use this calculation N: number  
of paived  
data points

| Covariance $\bar{X} = \frac{(2+3+4+6)}{4} = 3.75$                               |                                 |        |               |                |                    |  |
|---------------------------------------------------------------------------------|---------------------------------|--------|---------------|----------------|--------------------|--|
| J = 3.2                                                                         | 5                               |        |               |                |                    |  |
|                                                                                 |                                 | 1      | 2             | 3              | 4                  |  |
|                                                                                 | # of<br>bedrooms                | 2      | 3             | 4              | 6                  |  |
|                                                                                 | rent                            | 2      | 2.5           | 4              | 4.5                |  |
| $\frac{1}{N-1} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \frac{1}{y-1}$ | <b>j</b> (12-3.75<br><b>j</b> + | 5)[2-3 | 3.25)+<br>) = | (3-3.7<br>1.91 | -5)(2.5-3,25)<br>- |  |

| Covariance $\bar{\chi} = 3.75$<br>$\bar{\chi} = was 3.25$ , now 3250<br>$\cos(\chi, \chi)$ was 1.91, now <u>1910</u>                                                                |      |                  |      |      |      |      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|------|------|------|------|--|
| 4500                                                                                                                                                                                |      |                  | 1    | 2    | 3    | 4    |  |
| 7 3250                                                                                                                                                                              |      | # of<br>bedrooms | 2    | 3    | 4    | 6    |  |
| 2000                                                                                                                                                                                | 3.75 | rent             | 2000 | 2500 | 4000 | 4500 |  |
| $\frac{1}{3} \left( (2-3.75) (2000 - 3250) + \dots \right)$ $\frac{1}{3} \left( (2-3.75) (2000 - 3250) + \dots \right)$ $\frac{1}{3} \left( (2-3.75) (2000 - 3250) + \dots \right)$ |      |                  |      |      |      |      |  |

# **ICA Question 1: Calculating Covariance**

Calculate the covariance for the given data points.



Δ

6

0.75

## **ICA Question 2: Calculating Covariance**

Give an example data set for which the covariance is 0.  

$$\hat{\sigma}_{x,y}^2 = \frac{1}{N-1} \sum_{i} (x_i - \bar{x})(y_i - \bar{y})$$

$$\frac{1}{N-1} \sum_{i} (x_i - \bar{x})(y_i - \bar{$$



## Covariance

- Positive covariance = relationship w/pos. glope
- Negative covariance = Mg. Sope
- zero covariance = <u>No relationship</u>
- Covariance is <u>sensitive</u> to the scale of the underlying data
- The magnitude of the covariance tells us <u>nothing</u> about the slope of the line and <u>Nothing</u> about the degree of fit to the line

#### Covariance

- Some properties of covariance:
  - The covariance of a variable with itself is equal to its variance

• 
$$cov(X, X) = Var(X) = \sigma_X^2$$

- Random variables whose covariance is zero are uncorrelated, but not necessarily independent
- Random variables that are independent have a covariance of zero

## **Covariance Matrices**

- Given two (or more) variables, we can define a matrix to contain information about the linear relationships between these variables
- The diagonal in a covariance matrix is the variance of the variables

$$\sum = \frac{x}{\omega(x,x)} \frac{x}{\omega(x,y)} \frac{x}{\omega(x,y)}$$

#### **Covariance Matrices**

• Same deal when we have more than two variables



# **ICA Question 3: Covariance Matrices**



# **ICA Question 4: Covariance Matrices**

What might the scatter plot for the given covariance matrix look like?





# **ICA Question 5: Covariance Matrices**

R

What might the scatter plot for the given covariance matrix look like?

Pos cov = pos slopa heg cov = heg slope

|   | Α  | В  |
|---|----|----|
| Α | 2  | -4 |
| В | -4 | 2  |





# **ICA Question 6: Covariance Matrices**

What might the given covariance matrix be for the given data?





Correlation - Pearson's Correlation

 Correlation measures the "goodness of fit" about the line that we can draw through the points in our data set





 The more data that we have, the more confidence we can have in our predictions, but the correlation number doesn't explicitly tell you how much data you have





- Correlation always produces a number in the range of: [-1, 1]
- If a straight line cannot go through all of the data points, the correlation gets <u>course</u> for Zero

- Calculating Pearson's Correlation Coefficient:
- $\frac{cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}} \approx \frac{direction}{\sqrt{Var(X)}\sqrt{Var(Y)}} \approx \frac{1}{\sqrt{Var(X)}\sqrt{Var(Y)}} \approx \frac{1}{\sqrt{Var(X)}} \approx \frac{1}$
- This will produce a correlation of 0 if: b cov(X, Y) is 0

# **ICA Question 7: correlation**

cov(X, Y)correlation =  $\sqrt{Var(X)}\sqrt{Var(\overline{Y})}$ What is the correlation coefficient for A and 0.25 **B**? = 0.5 Which line would we "trust the most" for making a prediction of one variable based on the other? -0.62

|   | Α    | В    | С     |
|---|------|------|-------|
| A | 0.25 | 0.25 | -1.25 |
| B |      | 1    | -4    |
| С |      |      | 16.3  |

 $\bullet$ 

• Correlation is still tricky to interpret!

Calculate a p-value!

- A line with a correlation of 0.9 might be twice as good to make predictions with as a line with the correlation 0.64, for instance
  - (We'll talk about this more when we talk about R^2)
- Want to know how much to trust your correlation?

 We actually do this by getting the t-score and then calculating the p-value the same way we did before—looking up where we are in the t-distribution
 Dtakes into account "how much data"

#### Admin

• Test 4: if you have a conflict because of Eid celebrations, send Felix an email **now** so that we can get you set up with an alternate time

# Schedule HWB is released

Turn in ICA 20 on Canvas (make sure that this is submitted by 2pm!) - passcode is "hi"

**Test 4**: May 4th from 1 - 3pm in Snell Engineering 108

| Mon                                                                             | Tue                  | Wed                   | Thu                                                               | Fri | Sat | Sun                   |
|---------------------------------------------------------------------------------|----------------------|-----------------------|-------------------------------------------------------------------|-----|-----|-----------------------|
| April 4th<br>Lecture 19 - chi-square test,<br>multiple comparison correction    | Felix OH<br>Calendly |                       | Felix OH Calendly<br>Lecture 20 - covariance,<br>correlation      |     |     |                       |
| April 11th<br>Lecture 21 - conditional<br>probabilities, bayes                  | Felix OH<br>Calendly |                       | Felix OH Calendly<br>Lecture 22 - conditional<br>ind., bayes nets |     |     | HW 8 due<br>@ 11:59pm |
| April 18th<br>No lecture - Patriot's Day                                        | Felix OH<br>Calendly | Felix OH<br>Calendly  | <b>Felix OH Calendly</b><br>Lecture 23 - Regression:<br>R^2 & F   |     |     |                       |
| April 25th<br>Lecture 24 - presentations, wrap-up<br>Mini-project due @ 11:45am |                      | HW 9 due @<br>11:59pm |                                                                   |     |     |                       |

## More recommended resources on these topics

- Some slightly aggressive youtube videos (there's a lot of "bam!" sound effects?)
  - StatQuest: Covariance, Clearly Explained!!!
  - StatQuest: Pearson's Correlation, Clearly Explained!!!
- YouTube: Brandon Foltz, Statistics 101: The Covariance Matrix
- Website: Statology: How to find the p-value for a correlation coefficient in Excel