As you get settled...

an acceptable answer:
"I' mooing to sign-up after class"

- Get out a place to do today's ICA (8)
- remember to write your name, my name, the ICA \#, and the date!

ICA question 0: sign into khouryofficehours.com and navigate to our course's page. Did you do this/can you do this successfully?

Write down the available office hours over the weekend.
LD were only up to $55 \% 11$
Sign into piazza. What example did Prof. Felix post to help you all with HW 2?

- You can sign up by visiting www.piazza.com/northeastern/spring2022 /cs2810sp2022 and using the access code cs2810_pass

Projections \& Lines of best fit: Or, how to stop drawing in 3 dimensions and draw in 2 or 1

 insteadProjections

- A projection is a matrix transformation that we can apply to a point as many times as wed like and always get the same result out
- $A x=b 4$ vector output
- $A A x=b^{\infty}$ same b not a projection:

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
4 & 0 \\
0 & 0
\end{array}\right]
$$

- $A A A x=b$

$$
A^{2}=A
$$

. For example: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}2 \\ 3\end{array}\right]=\left[\begin{array}{l}2 \\ 0\end{array}\right]$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left(\left[\begin{array}{l}
2 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

Projections

- Why?
- We'll use projection matrices to project vectors in higher-dimensional space into lower-dimensional space

Projections

- Say you have a vector space defined by the following vectors:
- $\left[\begin{array}{l}-1 \\ -2\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 4\end{array}\right]$
. What is the span of $\left\{\left[\begin{array}{l}-1 \\ -2\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]\right\} ? \rightarrow$ a line $2 x=y$

Projections

. What is the span of $\left\{\left[\begin{array}{l}-1 \\ -2\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]\right\}$?

- Goal: given any new vector \vec{b}, find the point in the span of \vec{a} that is closest to \vec{b}

Projections onto a line

- given any new vector \vec{b}, what is the closest point in the span of \vec{a} ?
. let $\vec{a}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$
- \vec{p} will be the scaled version of \vec{a} that is the component of \vec{b} in \vec{a}
- \vec{e} will be the vector orthogonal to \vec{a} that "goes to" \vec{b}

Projections

1. $\vec{b}=\vec{p}+\vec{e}$ scalar, we
2. $\vec{p}=(c)$ want to know its
3. $\vec{e}=\vec{b}-\vec{p}$
$-\vec{a}$ and \vec{c} are orthogonal $a^{\top} e=O_{4}$ (dot prod)
-substitute \#3 into + replace $\vec{p} \omega / \# 2$

$$
=\xrightarrow{0 \quad a^{\top} b-a^{\top} c a=0} \frac{a^{\top} b}{a^{\top} a}=c
$$

$$
\begin{aligned}
& a^{\top}(\vec{b}-c \vec{a})=0 \quad a^{\top} b-a^{\top} c a=0 \\
& a^{\top} b=c a^{\top} a
\end{aligned}
$$

$$
\begin{aligned}
& \frac{a^{\top} b}{a^{\top} a}=C \quad a=(2 \times 1)=\left[\begin{array}{l}
\xi \\
2
\end{array}\right] \quad b=(2 \times 1) \\
& \frac{a}{\frac{(1 \times 2)(2 \times 1)}{(1 \times 2)(2 \times 1)}=\left[\begin{array}{l}
3 \\
4
\end{array}\right] a^{\top}=\left[\begin{array}{ll}
3 & 4
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
2
\end{array}\right]} \\
& \left.\frac{[3}{3} 4\right] \\
& {\left[\begin{array}{ll}
3 & 4
\end{array}\right]} \\
& \text { scalar } \\
& \text { you cant just eliminate these }
\end{aligned}
$$

Projections onto a line (example)

- let $\underline{\vec{a}}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$ and $\overrightarrow{\vec{b}}=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$
- $\vec{b}=\vec{p}+\vec{e}$
- $\vec{p}=c^{*} \vec{a}$
. $c=\frac{\vec{a}^{T} \vec{b}}{\vec{a}^{T} r^{\vec{a}}}$
$\vec{p}=\frac{\left[\begin{array}{lll}2 & 4\end{array}\right]\left[\begin{array}{l}-2 \\ 3\end{array}\right]}{a^{\top} a} \vec{a}=\frac{8}{20} \vec{a}=\left[\begin{array}{l}4 / 5 \\ 8 / 5\end{array}\right]$

Projections onto a plane

$A \vec{x} \neq \underline{\vec{b}}$

- Now, suppose that we are projecting

- $\vec{b}=\left[\begin{array}{l}3 \\ 1 \\ 5\end{array}\right]$ and we'd like to project it onto this span
- Goal: find \vec{p} closest to \vec{b} with \vec{p} in the span of \vec{a}_{0} and \vec{a}_{1}

Projections onto a plane

- Goal: find \vec{p} closest to \vec{b} with \vec{p} in the

> 1. $\vec{b}=\vec{p}+\vec{e}$
> 2. $\vec{p}=x_{0} a_{0}+x_{1} a_{1}=A \underline{x}$
3. $\vec{e}=\vec{b}-A x$

solve for x
span of \vec{a}_{0} and \vec{a}_{1}
z

$$
\operatorname{span} \text { ot } a_{0} \text { and } a_{1}
$$

Projections onto a plane

1. $\vec{b}=\vec{p}+\vec{e}$
2. $\vec{p}=x_{0} a_{0}+x_{1} a_{1}=A x$
3. $\vec{e}=\vec{b}-A x$
\vec{e} is orthogonal to A so:
$a^{\top}(b-A x)=0$ dot prod
$a_{0}^{\top}(b-A x)=0$ of a basis of $a_{1}^{\top}(b-A x)=0 \quad A w / e^{-D}$

$$
\left[\begin{array}{l}
\left.-a_{0}-\right] \\
-a_{1}-
\end{array}\right] \underset{A^{\top} \text { tb }}{(b-A x)}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$\rightarrow A^{\top}$ to flip

Projections onto a plane

- This leaves us with the components of A as row vectors, but if we take the transpose $\left(A^{T}\right)$, we get column vectors

$$
\begin{aligned}
& \text { again } \\
& A^{\top}\left(b-A_{x}\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& A^{\top} b-A^{\top} A x=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& A^{\top} b=A^{\top} A(x) \rightarrow \text { we want } x
\end{aligned}
$$

Matrix Inverses * for square matrices

- We have a notion of complementary matrices that "cancel" each other out
- But what does it mean to "cancel out" a matrix?
- What wed like is: ?? * $C x=x$

Lo some matrix $w /$ the save shape as C

- So what matrix can we multiply with x that results in x ?

$$
\begin{aligned}
& \text { So what matrix can we multiply with } x \text { that results in } x \text { ? } \\
& \left.\begin{array}{ll}
? ?
\end{array}\right]\left[\begin{array}{l}
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]
\end{aligned}
$$

Tosone other matrix $\operatorname{LD}_{D} C^{-1} C$ to be this

Matrix Inverses

- The inverse of a square matrix is the matrix that we can multiply it by to result in the identity matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- $C^{-1} C=I$
- Which gives us $C^{-1} C x=I x=x$
A is matrix that is the vectors
Projections onto a plane defining the span that we ore projedring into
- So we had the equation $A^{T} b=A^{T} A x$ and we are trying to solve for x
Lomult. both sides by $\left(A^{\top} A\right)^{-1}$

$$
\left(A^{\top} A\right)^{-1} A^{\top} b=
$$

$\left(A^{\top} A\right)^{-1} A^{\top} b=x$

- Finally, we can compute the projection \mathbf{X} \vec{p} by substituting in x to our original observation that $\vec{p}=A x$

$$
-p=A\left(A^{\top} A\right)^{-1} A^{\top} b
$$

L_{D} do these comp. w/ your computer
X is the linear combination of the vectors in A that get you to \vec{P}

Projections onto a plane $\quad A=\left[\begin{array}{ll}a_{1} & 1 \\ 1 & a_{1} \\ 1 & 1\end{array}\right]$
ICA Question 1: what is \vec{p} when $\vec{b} \in \operatorname{span}\left(\left\{a_{0}, a_{1}\right\}\right)$?
$\vec{b}=x_{0} a_{0}+x_{1} a_{1} \quad \stackrel{\operatorname{span}\left(\left\{a_{0}, a_{1}\right\}\right) ?}{\longrightarrow}$ a line, a $2 d$ plan
First, draw a picture then answer based on the picture. Then, do the math to solve for \vec{p}.

Remember: $1-\vec{P}_{T}=A_{x}$

$\overrightarrow{3 P}=\vec{b}$
2) $\vec{p}=A\left(A^{\top} A\right)^{-1} A^{\top} b$
sub \#1 into \#2 following \#3

$$
a_{0}=\left[\begin{array}{l}
3 \\
0
\end{array}\right] \quad a_{1}=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \begin{aligned}
& \text { see ext } \\
& \text { slide! }
\end{aligned}
$$

We know
$\vec{b}=\left[\begin{array}{ll}1 & d_{1} \\ a_{0} & \alpha_{1} \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x_{0} \\ x_{2}\end{array}\right]=A_{x}$ be cause we have defined it as in the span of A $\vec{p}=A\left(A^{\top} A\right)^{-1} A^{\top} \vec{b}$ from our derivation (slide 16)
$=A\left(A^{\top} A\right)^{-1} A^{\top} A \times$ substituting in b

$$
y=A_{x}
$$

Projections onto a plane
ICA Question 2: what is \vec{p} when \vec{b} is orthogonal to all a_{i} ?
UDall vectors
that define the span
First, draw a picture then answer based on the picture. Then, do the math to solve for \vec{p} to verify your answer.

Line of best fit wéll dothis on Monday!

- We'll want to allow for lines that do not go through the origin

Line of best fit

- When we have a system where $A x=b$ has no solutions
- (There is no linear combination of x in the span of A that makes b)
- Model of a line: $x_{0}+x_{1} a_{1}=b$

Line of best fit

Line of best fit

- When we have a system where $A x=b$ has no solutions
- (There is no linear combination of x in the span of A that makes b)
- We'll solve $A x=p$ instead where p is the projection of b into the columns of A

Next time: fitting polynomial lines

python and matrix math

- Python is a programming language!
- It has some libraries that make doing matrix math quite convenient (and fast!)
- You all saw python when we looked at the perceptron examples...
- Now we'll take a look at doing some matrix manipulations together

python and matrix math

```
In [1]: 1 import numpy as np
In [2]: 1 # building a matrix
    2 A = np.array([[1, 2, 3], [4, 5, 6]])
    # asking for the dimensions of the matrix
    4 A.shape
Out[2]: (2, 3)
In [3]: 1 # building a vector
    2 x = np.array([[1, 2, 3]])
    3 x.shape
Out[3]: (1, 3)
In [6]: 1 # getting the transpose of a matrix/vector
    print(A.T)
    print(A.T.shape)
    print(x.T)
    5 \text { print(x.T.shape)}
    [[14]
    [2 5]
    [3 6]]
    (3, 2)
    [[1]
    [2]
    [3]]
    (3, 1)
```


python and matrix math

In [8]: 1 \# doing some matrix multiplies
2 A @ x \# won't work, shapes don't match!

ValueError
Traceback (most recent call last)
<ipython-input-8-23a2bc3ce7ea> in <module>
1 \# doing some matrix multiplies
----> 2 A @ x \# won't work, shapes don't match!
ValueError: matmul: Input operand 1 has a mismatch in its core dimension 0 , with gufunc sig nature (n ?,k),(k,m?)->(n?,m?) (size 1 is different from 3)

In [9]: 1 A @ x.T
Out [9]: array([[14],
[32]])

In [12]: 1 \# get the inverse of a matrix
$2 C=n p$.array ([[1, 2], [4, 5]])
3 C_inv = np. linalg.inv(C)
4 print(C_inv)
$\left[\begin{array}{lll}{[-1.66666667} & 0.66666667\end{array}\right]$
$\left[\begin{array}{lll}{[1.33333333-0.33333333]}\end{array}\right]$

Schedule

Turn in ICA 8 on Gradescope
HW 2 is due on Sunday
Quiz-test 1 is in class next Thursday. \rightarrow Send me an email now if you hame any schedule concerns

Mon	Tue	Wed	Thu	Fri	Sat	Sun
February 7th Lecture 7 - Vector spaces in Snell Engineering 108	Felix OH Calendly		Lecture 8 - line of best fit Felix OH Calendly			HW 2 due @ 11:59pm
February 14th Lecture 9 - Polynomial best fit	Felix OH Calendly		Lecture 10 - QUIZ 1 (HW 1-2), in class Felix OH Calendly			

