Admin:

"high five"
TRACE participation update $\sim 50 \%$ participation
HW9 due Weds April 27.

Bayes Nets!

- compute multiple target vars from multiple evidence vars
$-P(A B C \mid X Y Z)=P(A B C X Y Z) / P(X Y Z)$
- conditional independence
- bayes net notation
- computing conditional probabilities
- via spreadsheet ("computer" method)
- algebraically
- (15 mins of next lesson)
(enjoy Bayes Nets?
see "Probabilisitic Graphical Models". Daphne. Koller \& Coursera course)

Conditional Independence

(algebraic) definition:
We say that X, Y conditionally independent (given Z) if:

$$
P(X \mid Y, Z)=P(X \mid Z) \text { and } P(Y \mid X Z)=P(Y \mid Z)
$$

Example: F and T are conditionally independent given W

- Marathon (F)orecasted weather (day before)
- Observed (W)eather day of marathon
- Average (T)ime of runners on course

If the forecasted weather is "good" then run times will be lower.

- in general, F and T and dependent

Given that we observe the actual weather, then the forecast no longer informs average run time.

- after observing the particular W, F and T are independent
(intuitive) definition: the only way X and Y influence is each other is through Z

Bayesian Network (Bayes Net)
(formally):
A directed, acyclic graph which represents conditional distributions / independences between a set of random variables.
each node represents a random variable directed edges represent conditional distributions

Has cyCLE, Not A BAAS NET any node without inward edges has prob specified (its part of "bayes net" too!)

$$
\begin{gathered}
P(A)(A) \rightarrow(B) \rightarrow(C) \quad P(A B)=P(B \mid A) P(A) \\
P(B A) P(C \mid 0) \\
P(A B C)=P(C \mid A B) P(A B)
\end{gathered}
$$

(informally):
a network which describes how random variables influence each other. can be used to compute conditional probabilities of interest

WHAT ARE BMES NETS G000 for ?

Bayes nets allow us to incorporate multiple pieces of evidence into some conditional prob of interest:
given a person has:

- symptom 4
- symptom 11
- risk factor 7
whats the prob of liver disorder?
source: https://sites.pitt.edu/~druzdzel/psfiles/cbmi99a.pdf

source: https://towardsdatascience.com/introduction-to-bayesian-networks-81031eeed94e

Bayes Net Notation (our convention)

In Class Assignment 2:

Estimate / intuite the four probabilities below, which are greater / lesser / equal to other probs?

1. What is the prob of thief? $P(t 1)=.01$
2. Given that alarm is going off, what is prob of thief?
$\mathrm{P}(\mathrm{t} 1 \mid \mathrm{al})>\mathrm{P}(\mathrm{t} 1)$. intuition: al and t1 positive correlated
3. Given that alarm is going off $\& d o g$ is barking, what is prob of thief?
$P(t 1 \mid a 1, b 1)=p(t 1 \mid a 1)$

$P(t 1 \mid a 1, b 1, e 1)<P(t 1 \mid a 1, b 1)$

With a computer:
Step 1: Rewrite conditional probability without conditional
Step 2(c): In a spreadsheet, compute prob of every possible combination of outputs for all vars
Step 3(c): Computer the needed probabilities from step 1 via marginalization

With algebra:

Step 1: Rewrite conditional probability without conditional Step 2(a): rewrite each conditional probability using only probabilities given in Bayes Net - add variables via marginalization

$$
P(A)=\text { sum_ } \mathrm{P}(\mathrm{~A}, \mathrm{~b})
$$

- factor joint distributions into given conditional probabilities:
$P(A, B)=P(B \mid A) P(A)$
- utilize given independence relationships between variables
$P(A, B)=P(A) P(B)$
Step 3(a): plug in values

Step 1: write conditional probabilities as ratio of (not conditional) probabilities

(ex: Given that alarm is going off \& dog is barking, what is prob of thief?)

$$
P\left(t_{1} \mid a, b_{1}\right)=\frac{P\left(t_{1}, b_{1} b_{1}\right)}{P\left(a, b_{1}\right)}
$$

With a computer ...

Prooncino a sont table itenamivecy

Producing Sont table (ADonco inderendent Nodes)

Producing Joint Table (Dergudent nodes)

$P(T, E)=P(T \mid E) P(E)=P(T) P(E)$ since E, T indept
In Class Exercise (don't submit):

Build the joint distribution table for the bayes net on the left.
(You needn't submit for credit. You can check your work with the given final answer csv on website)
$P(A T E)=P(A \mid T E) P(T E)=P(A \mid T E) P(T) P(E)$ since T, E are independent
$P(D A T E)=P(D \mid A T E) P(A T E)=P(D) P(A T E)$ since D is independent of ATE
$P(B D A T E)=P(B \mid D A T E) P(D A T E)=P(B \mid D A) P(D A T E)$ since B is conditional indep of TE given DA

Marginalizng in Sowt Tancic

x	y	z	$P_{n o s}$
x_{0}	y_{0}	z_{0}	$1 / 4$
x_{0}	y_{0}	z_{1}	0
x_{0}	y_{1}	z_{0}	0
x_{0}	y_{1}	z_{1}	$1 / 8$
x_{1}	y_{0}	z_{0}	$3 / 8$
x_{1}	y_{0}	z_{1}	0
x_{1}	y_{1}	z_{0}	0
x_{1}	y_{1}	z_{1}	$1 / 4$

Compute $P\left(x_{0} z_{0}\right)$

$$
\begin{aligned}
& =P\left(x_{0} y_{0} z_{0}\right)+P\left(x_{0} y_{1} z_{0}\right) \\
& =1 / 4+0=1 / 4
\end{aligned}
$$

Marcinalizing in
Soint Tanoil

x	y	z	$P_{\text {nos }}$
x_{0}	y_{0}	z_{0}	$1 / 4$
x_{0}	y_{0}	z_{1}	0
x_{0}	y_{1}	z_{0}	0
x_{0}	y_{1}	z_{1}	18
x_{1}	y_{0}	z_{0}	$3 / 8$
x_{1}	y_{0}	z_{1}	0
x_{1}	y_{1}	z_{0}	0
x_{1}	y_{1}	z_{1}	$1 / 4$

Quick Pracerice
Compore $P\left(y_{1} x_{1}\right)=1 / 4$
compure $P\left(x_{0}\right)=1 / 4+1 / 0=3 / 8$

Putting it all together:
Step 1: Rewrite conditional probability without conditional
Step 2(c): In a spreadsheet, compute prob of every possible combination of outputs for all vars Step 3(c): Compute the needed probabilities from step 1 via marginalization

Example:
Given alarm is going off and dog is barking, what is the probability of a thief?

$$
\begin{aligned}
& P\left(t_{1} \mid a_{1} b_{i}\right)=\frac{P\left(t_{1} a_{1} b_{i}\right)}{P\left(a_{i} b_{i}\right)} \simeq \frac{.0036}{.00957} \xlongequal{\imath} 381 \\
& p(a 1, b 1) \quad 0.009568 \\
& \text { p(t1|a1, by) } 0.38125
\end{aligned}
$$

In Class Exercise 3:
Explicitly compute each of the following $\begin{aligned} & p(\mathrm{t} 1 \mid a 1)\end{aligned}$

1. What is the prob of thief? $P\left(t_{i}\right)=.01$

$$
\frac{P\left(a_{1} t_{1}\right)}{P\left(a_{1}\right)}=381
$$

2. Given that alarm is going off, what is prob of thief?
3. Ojven that alarm is going off $\&$ dog is barking, what is prob of thief? $P\left(h_{1} a_{1} b_{1}\right)=.381$
4. Given that alarm is going off, dog is barking \& earthquake, what is prob of thief?

Answer each question below with one sentence (please avoid algebraic motivations and appeal to our intuition):

- Why is the prob of 2 greater than the prob of 1 ?
- Why is the prob of 3 equal to the prob of 2?
- Why is the prob of 4 less than the prob of 2?

$$
P\left(t_{1} \mid a_{1}, b_{1} e_{1}\right)=\frac{P\left(t a_{1}, b_{1} e_{1}\right)}{P\left(a, b_{1}\right)}
$$

$$
\begin{gathered}
P\left(t_{1} \mid a_{1}, b_{1} e_{1}\right)=\frac{P\left(t_{1} a_{1} b_{1} e_{1}\right)}{P\left(a_{1}, b_{1} e_{1}\right)}= \\
P(t 1, a 1, e 1, b 1)=0.0002392 \\
P(a 1, e 1, b 1)=0 \\
P(t 1 \mid a 1, e 1, b 1)=0.0381594951456311
\end{gathered}
$$

With a computer:
Step 1: Rewrite conditional probability without conditional
Step 2(c): In a spreadsheet, compute prob of every possible combination of outputs for all vars
Step 3(c): Computer the needed probabilities from step 1 via marginalization

With algebra:

Step 1: Rewrite conditional probability without conditional Step 2(a): rewrite each conditional probability using only probabilities given in Bayes Net - add variables via marginalization

$$
P(A)=\text { sum_ } \mathrm{P}(\mathrm{~A}, \mathrm{~b})
$$

- factor joint distributions into given conditional probabilities:
$P(A, B)=P(B \mid A) P(A)$
- utilize given independence relationships between variables
$P(A, B)=P(A) P(B)$
Step 3(a): plug in values

$$
\begin{aligned}
& P\left(a_{0}\right)=\sum_{+e} P\left(a_{0}+e\right) \\
& =P\left(a_{0} \mid t_{0} e_{0}\right) P\left(t_{0}\right) P\left(e_{0}\right) \\
& \left.P\left(a_{0}\right) t_{0} e_{1}\right) P\left(t_{0}\right) P\left(e_{1}\right) \\
& P\left(a_{0} \mid t_{1} e_{0}\right) P\left(t_{1}\right) P\left(e_{0}\right) \\
& \left.P\left(a_{0}\right) t_{1} e_{1}\right) P\left(t_{1}\right) P\left(e_{1}\right) \\
& =1 .(.99)(.95)+8(.19)(.05) \\
& +.4(.01)(.95)+.2(.01)(.05)=.984
\end{aligned}
$$

$$
\begin{aligned}
& P\left(b_{0}\right)=\sum_{a d} P\left(b_{0} a d\right) \\
& =P\left(b_{0} \mid a_{0} d_{0}\right) P\left(a_{0}\right) P\left(d_{0}\right) \\
& +P\left(b_{0} \mid 0_{0} d_{1}\right) P\left(a_{0}\right) P\left(d_{1}\right) \\
& +P\left(b_{0} \mid a_{1} d_{0}\right) P\left(a_{i}\right) P\left(d_{0}\right) \\
& +P\left(b_{0} \mid a_{1} d_{1}\right) P\left(a_{1}\right) P\left(d_{1}\right) \\
& =1(.984)(.8)(.2)(.984)(.0) \\
& (.5)(.016)(.8) \quad(001)(.016)(0)=.833 \\
& \text { Skip }
\end{aligned}
$$

\square
\square

al, do	.5	.5
	di	01

EUTRA: NOT ON HN OR QuIz
Topocogical Sont of Oinected Griapal order Nodes so Tuat if edoe x, y Exists tuen x is in List Befone y

$\overrightarrow{A_{1}, C}$ is TODO SOnTED
$\overrightarrow{A_{1} C, B}$ is NOT TOPO SONTED

