```
CS 2810 April·19 Dec 4
```

Admin:

TRACE participation update ~ 50% participation HW9 due Weds April 27

Bayes Nets!

- compute multiple target vars from multiple evidence vars

. - conditional independence

-P(ABC|XYZ) = P(ABCXYZ) / P(XYZ)

see "Probabilisitic Graphical Models" Daphne Koller & Coursera course).

Conditional Independence

(algebraic) definition:

We say that X, Y conditionally independent (given Z) if:

P(X|Y, Z) = P(X|Z) and P(Y|X|Z) = P(Y|Z)

Example: F and T are conditionally independent given W

- Marathon (F) orecasted weather (day before)
- Observed (W)eather day of marathon
- Average (T)ime of runners on course

If the forecasted weather is "good" then run times will be lower.

- in general, F and T and dependent
- Given that we observe the actual weather, then the forecast no longer informs average run time.
 - after observing the particular W, F and T are independent.

(intuitive) definition: the only way X and Y influence is each other is through Z

Bayesian Network (Bayes Net)

(formally):

A directed, acyclic graph which represents conditional distributions / independences between a set of random variables.

each node represents a random variable directed edges represent conditional distributions any node without inward edges has prob specified (its part of "bayes net" too!)

(informally):

a network which describes how random variables influence each other. can be used to compute conditional probabilities of interest

WHAT ARE BMES NETS

source: https://sites.pitt.edu/~druzdzel/psfiles/cbmi99a.pdf

Bayes nets allow us to incorporate multiple pieces of evidence into some conditional prob of interest:

given a person has:

- symptom 4
- symptom 11
- risk factor 7

whats the prob of liver disorder?

source: https://towardsdatascience.com/introduction-to-bayesian-networks-81031eeed94e

(OUR CONTENTION) VET NOTATION EVENT NO THIEF (quick) ICA 1: Each random variable is denoted with a capital what's prob of earthquake? letter (T for Thief). Each outcome in sample space given a thief in house, but no has its own lowercase earthquake, what's prob letter: alarm goes off? t0 = no thief t1 = thief interpretation question: - is alarm better at detecting thieves or earthquakes? (Dog) t1, e1 - which sound bothers the dog more, the alarm or doorbell? a1, d0 < planties

In Class Assignment 2:

Estimate / intuite the four probabilities below, which are greater / lesser / equal to other probs?

- 1. What is the prob of thief? P(t1) = .01
- 2. Given that alarm is going off, what is prob of thief?
- P(t1|a1) > P(t1). intuition: a1 and t1 positive correlated
- 3. Given that alarm is going off & dog is barking, what is prob of thief?
- P(t1|a1, b1) = p(t1|a1)
- 4. Given that alarm is going off, dog is barking & earthquake, what is prob of thief?
- P(t1|a1, b1, e1) < P(t1|a1, b1)

How do we compute conditional probabilities from a Bayes Net?

With a computer:

Step 1: Rewrite conditional probability without conditional

Step 2(c): In a spreadsheet, compute prob of every possible combination of outputs for all vars.

Step 3(c): Computer the needed probabilities from step 1 via marginalization.

With algebra:

Step 1: Rewrite conditional probability without conditional

Step 2(a): rewrite each conditional probability using only probabilities given in Bayes Net

- add variables via marginalization
 - $P(A) = \sum_{b} P(A, b)$
- factor joint distributions into given conditional probabilities:
 - P(A, B) = P(B|A) P(A)
- utilize given independence relationships between variables

$$P(A, B) = P(A) P(B)$$

Step 3(a): plug in values

Step 1: write conditional probabilities as ratio of (not conditional) probabilities

P(t, a, b) = P(t, a, b)

Step 2(c): In a spreadsheet, compute prob of every possible combination of outputs for all vars

	•	•	•			B: Barking >	D: Doorbell	A: Alarm	T: Thief	E: Eartho	Įu∌ l	P(BDATE)
•	•	•	•	• 1	-,	3 0	d0	a0	tO	e0		0.7524
	۰	۰	٠			b0	d0	a0	t0	e1		0.03168
		-				b0	d0	a0	t1	e0		0.00304
	er.	1				b0	d0	a0	t1	e1		8E-05
			.1	riE	رر	b0	d0	a1	tO	e0		0
الريخ ان		6 1	31	•	٠	b0	d0	a1	t0	e1		0.00396
C. 5	200		٠	۰	۰	b0	d0	a1	t1	e0		0.00228
ب اد	٠					b0	d0	a1	t1	e1		0.00016
		L	7		۰	b0	d1	a0	t0	e0		0.03762
V	-		Ť			b0	d1	a0	t0	e1		0.001584
• •	۰	•	•	•	۰	b0	d1	a0	t1	e0		0.000152
•	٠	۰	٠	۰	٠	b0	d1	a0	t1	e1		4E-06
	۰		٠	۰	۰	b0	d1	a1	t0	e0	_ \	0
						b0	d1	a1	t0	e1		1.98E-05
						b0	d1	a1	t1	e0		1.14E-05
	-	-		-	-	b0	d1	a1	t1	e1		8E-07
•	۰	۰	٠	۰	۰	b1	d0	a0	tO	e0		0 '
	•	•	٠	•		b1	d0	a0	tO	e1		0

PROR

In Class Exercise (don't submit):

Build the joint distribution table for the bayes net on the left.

(You needn't submit for credit. You can check your work with the given final answer csv on website)

$$P(ATE) = P(A|TE) P(TE) = P(A|TE) P(T)P(E) since T, E are independent$$

P(DATE) = P(D|ATE) P(ATE) = P(D) P(ATE) since D is independent of ATE

P(BDATE) = P(B|DATE) P(DATE) = P(B|DA)P(DATE) since B is conditional indep of TE given DA

MARGINALIZING IN. X Y Z / Pros Xo Yo Zo /14 1 X. 1 Y. 2, 1 D COMPUTE P(XOZO) Ko Y Zo O = P(x0 40 Z0)+ P(x0 4,20) X6 . Y. Z1 14 + 0 = 14 . X, . Y, . Z. X, Y, Z, \ O X1 4, Z. 10

MARGINALIZING IN SOINT TABLE (step 3c)

COMPUTE P

COMPUTE $P(X_0) = 1/4$ COMPUTE $P(X_0) = 1/4 = 3/8$

Putting it all together:

Step 1: Rewrite conditional probability without conditional Step 2(c): In a spreadsheet, compute prob of every possible combination of outputs for all vars Step 3(c): Compute the needed probabilities from step 1 via marginalization

Example:

Given alarm is going off and dog is barking, what is the probability of a thief?

$$\rho(t, a_1, b_1) = \frac{\rho(t, a_1, b_1)}{\rho(t, a_1, b_1)} = \frac{\rho(t, a_1, b_1)}{\rho(a_1, b_1)} = \frac{\rho(t, a_1$$

iven that alarm is going off & dog is barking, what is prob of thief? $P(h \mid \alpha, b) = .381$

P(a1, t1) = 0.0061 p(a1) = 0.016 p(t1|a1) = 0.38125 P(a1, t1) = 0.0061 p(t1|a1) = 0.38125 P(a1, t1) = 0.0061 p(t1|a1) = 0.38125 1. What is the prob of thief? $P(t_1) = 0.01$

2. Given that alarm is going off, what is prob of thief?

4. Given that alarm is going off, dog is barking & earthquake, what is prob of thief?

Answer each question below with one sentence (please avoid algebraic motivations and

appeal to our intuition): - Why is the prob of 2 greater than the prob of 1?

- Why is the prob of 3 equal to the prob of 2? - Why is the prob of 4 less than the prob of 2? $P(t_i|a_ib_ie_i) = \underbrace{P(t_ia_ib_ie_i)}_{p(a_ib_ie_i)}$

$$P(t_i|a_ib_ie_i) = \underbrace{P(t_ia_ib_ie_i)}_{p(a_ib_ie_i)} =$$

How do we compute conditional probabilities from a Bayes Net?

With a computer:

Step 1: Rewrite conditional probability without conditional

Step 2(c): In a spreadsheet, compute prob of every possible combination of outputs for all vars.

Step 3(c): Computer the needed probabilities from step 1 via marginalization.

With algebra:

Step 1: Rewrite conditional probability without conditional

Step 2(a): rewrite each conditional probability using only probabilities given in Bayes Net

- add variables via marginalization
 - $P(A) = \sum_{b} P(A, b)$
- factor joint distributions into given conditional probabilities:
 - P(A, B) = P(B|A) P(A)
- utilize given independence relationships between variables

$$P(A, B) = P(A) P(B)$$

Step 3(a): plug in values

$$P(a_{0}) = \underbrace{\sum_{t \in A_{0}} P(a_{0} + e_{0})}_{t \in A_{0}} P(a_{0} + e_{0}) P(a_{0}) P(e_{0})$$

$$= P(a_{0} \mid a_{0} \mid b_{0}) P(a_{0} \mid b_{0} \mid b$$

. . . .

. . . .

EXTRA: NOT ON HN OR QUIZ TOPOLOGICAL SORT OF DIRECTED GRAPH ONDER NODES SO THAT IF EDGE XIY EXISTS THEN X IS IN LIST BEFORE Y A,B,C 15 TOPO SOUTED A,C,B IS NOT TOPO SONTED WE MUST GOD NOOES IN BMES NET IN . . . TOPO ORDERING.