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Introduction

These lecture notes were developed for Logic and Computation, a freshman-level class taught
at the College of Computer and Information Science of Northeastern University. Starting
in Spring 2008, this is a class that all students in the college are required to take.

The goals of the Logic and Computation course are to provide an introduction to formal
logic and its deep connections to computing. Logic is presented from a computational
perspective using the ACL2 Sedan theorem proving system. The goal of the course is
to introduce fundamental, foundational methods for modeling, designing, specifying and
reasoning about computation. The topics covered include propositional logic, recursion,
contracts, testing, induction, equational reasoning, termination analysis, term rewriting, and
various proof techniques. We show how to use logic to formalize the syntax and semantics
of the core ACL2s language, a simple LISP-based language with contracts. We then use
the ACL2s language to formally reason about programs, to model systems at various levels
of abstraction, to design and specify interfaces between systems and to reason about such
composed systems. We also examine decision procedures for fragments of first-order logic
and how such decision procedures can be used to analyze models of systems.

The students taking the Logic and Computation class have already taken a program-
ming class in the previous semester, in Racket. The course starts by reviewing some basic
programming concepts. The review is useful because at the freshman level students benefit
from seeing multiple presentations of key concepts; this helps them to internalize these con-
cepts. For example, in past semesters I have asked students to write very simple programs
(such as a program to append two lists together) during the first week of classes and a
surprisingly large number of students produce incorrect code.

During the programming review, we introduce the ACL2s language. This is the language
we use throughout the semester and it is similar to Racket. The syntax and semantics of the
core ACL2s language are presented in a mathematical way. We provide enough information
so that students can determine what sequence of glyphs form a well-formed expression
and how to formally evaluate well-formed expressions potentially containing user-defined
functions with constants as arguments (this is always in a first-order setting). This is a
pretty big jump in rigor for students and is advanced material for freshmen students, but
they already have great intuitions about evaluation from their previous programming class.
This intuition helps them understand the rigorous presentation of the syntax and semantics,
which in turns helps strengthen their programming abilities.

The lecture notes are sparse. It would be great to add more exercises, but I have not done
that yet. Over the course of many years, we have amassed a large collection of homework
problems, so students see lots of exercises, and working through these exercises is a great
way for them to absorb the material, but the exercises are not in the notes. You can think
of the lecture notes as condensed notes for the course that are appropriate for someone who
knows the material as a study guide. The notes can also be used as a starting point by
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students, who should mark them up with clarifications as needed when they attend lectures.
I advise students to read the lecture notes before class. This way, during class they can focus
on the lecture instead of taking notes and they are better prepared to ask for clarifications.

When I started teaching the class, I used the ACL2 book, Computer-Aided Reasoning, An
Approach by Kaufmann, Manolios and Moore. However, over the years I became convinced
that using an untyped first-order logic was not the optimal way of introducing logic and
computation to students because they come in with a typed view of the world. That’s not to
say they have seen type theory; they have not. But, they are surprised when a programming
language allows them to subtract a string from a rational number. Therefore, with the help
of my Ph.D. student Harsh Chamarthi, I have focused on adding type-like capabilities to
ACL2s. Most notably, we added a new data definition framework to ACL2s that supports
enumeration, union, product, record, map, (mutually) recursive and custom types, as well
as limited forms of parametric polymorphism. We also introduced the defunc macro, which
allows us to formally specify input and output contracts for functions. These contracts
are very general, e.g., we can specify that / is given two rationals as input, and that the
second rational is not 0, we can specify that zip is given two lists of the same length as
input and returns a list of the same length as output and so on. Contracts are also checked
statically, so ACL2s will not accept a function definition unless it can prove that the function
satisfies its contracts and that for every legal input and every possible computation, it is
not possible during the evaluation of the function being defined to be in a state where some
other function is poised to be evaluated on a value that violates its input contract. I have
found that a significant fraction of erroneous programs written by students have contract
violations in them, and one of the key things I emphasize is that when writing code, one
needs to think carefully about the contracts of the functions used and why the arguments
to every function call satisfy the function’s contract. Contracts are the first step towards
learning how to specify interfaces between systems. With the move to contracts, the ACL2
book became less and less appropriate, which led me to write these notes.

I have distributed these notes to the students in Logic and Computation for several
years and they have found lots of typos and have made many suggestions for improvement.
Thanks and keep the comments coming!
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A Simple Functional Programming Language

In this chapter we introduce a simple functional programming language that forms the core
of ACL2s. The language is a dialect of the Lisp programming language and is based on
ACL2. In order to reason about programs, we first have to understand the syntax and
semantics of the language we are using. The syntax of the language tells us what sequence
of glyphs constitute well-formed expressions. The semantics of the language tells us what
well-formed expressions (just expressions from now on) mean, i.e., how to evaluate them.
Our focus is on reasoning about programs, so the programming language we are going to
use is designed to be simple, minimal, expressive, and easy to reason about.

What makes ACL2s particularly easy to reason about is the fact that it is a functional
programming language. What this means is that every built-in function and in fact any
ACL2s function a user can define satisfies the rule of Leibniz:

If x1 = y1 and x2 = y2 and · · · and xn = yn, then (f x1 x2 · · ·xn) = (f y1 y2 · · · yn)

Almost no other language satisfies this very strict condition, e.g., in Java you can define a
function foo of one argument that on input 0 can return 0, or 1, or any integer because it
returns the number of times it was called. This is true for Scheme, LISP, C, C++, C#,
OCaml, etc. The rule of Leibniz, as we will see later, is what allows us to reason about
ACL2s in a way that mimics algebraic reasoning.

You interact with ACL2s via a Read-Eval-Print-Loop (REPL). For example, ACL2s
presents you with a prompt indicating that it is ready to accept input.

ACL2S BB !>

You can now type in an expression, say

ACL2S BB !>12

ACL2s reads and evaluates the expression and prints the result

12

It then presents the prompt again, indicating that it is ready for another REPL interaction

ACL2S BB !>

We recommend that as you read these notes, you also have ACL2s installed and follow along
in the “Bare Bones” mode. The “BB” in the prompt indicates that ACL2s is in the “Bare
Bones” mode.

The ACL2s programming language allows us to design programs that manipulate objects
from the ACL2s universe. The set of all objects in the universe will be denoted by All. All
includes:

� Rationals: For example, 11,−7, 3/2,−14/15.
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� Symbols: For example, x, var, lst, t, nil.

� Booleans: There are two Booleans, t, denoting true and nil, denoting false.

� Conses: For example, (1), (1 2 3), (cons 1 ()), (1 (1 2) 3).

The Rationals, Symbols, and Conses are disjoint. The Booleans nil and t are Symbols.
Conses are Lists, but there is exactly one list, the empty list, which is not a cons. We will
use () to denote the empty list, but this is really an abbreviation for the symbol nil.

The ACL2s language includes a basic core of built-in functions, which we will use to
define new functions.

It turns out that expressions are just a subset of the ACL2s universe. Every expression is
an object in the ACL2s universe, but not conversely. As we introduce the syntax of ACL2s,
we will both identify what constitutes an expression and what these expressions mean as
follows. If expr is an expression, then

JexprK
will denote the semantics of expr , or what expr evaluates to when submitted to ACL2s

at the REPL.
We will introduce the ACL2s programming language by first introducing the syntax and

semantics of constants, then Booleans, then numbers, and then conses and lists.

2.1 Constants

All constants are expressions. The ACL2s Boolean constant denoting true is the symbol t
and the constant denoting false is the symbol nil. These two constants are different and
they evaluate to themselves.

JtK = t

JnilK = nil

nil 6= t

The numeric constants include the natural numbers:

0, 1, 2, . . .

and the negative integers:

−1,−2,−3, . . .

All integers evaluate to themselves, e.g.,

J3K = 3

J−12K = −12

The numeric constants also include the rationals:

1/2, −1/2, 1/3, −1/3, 3/2, −3/2, 2/3, −2/3, . . .

We will describe the evaluation of rationals in Section 2.3.
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2.2 Booleans

There are two built-in functions, if and equal.
When we introduce functions, we specify their signature. The signature of if is:

if : Boolean× All× All → All

The signature of if tells us that if takes three arguments, where the first argument is
a Boolean and the rest of the arguments are anything at all. It returns anything. So, the
signature specifies not only the arity of the function (how many arguments it takes) but
also its input and output contracts.

Examples of if expressions include the following.

(if t nil t)

(if nil 3 4)

All function applications in ACL2s are written in prefix form as shown above. For
example, instead of 3 + 4, in ACL2s we write (+ 3 4). The if expressions above are
elements of the ACL2s universe, e.g., the first if expression is a list consisting of the
symbols if, t, nil, and t, in that order.

Not every list starting with the symbol if is an expression, e.g., the following are not
expressions.

(if t nil)

(if 1 3 4)

The first list above does not satisfy the signature of if, which tells us that the function
has an arity of three. The second list also does not satisfy the signature of if, which tells
us that the input contract requires that the first argument is a Boolean. In general, a list is
an expression if it satisfies the signature of a built-in or previously defined function.

The semantics of (if test then else) is as follows.

J(if test then else)K = JthenK, when JtestK = t

J(if test then else)K = JelseK, when JtestK = nil

For all ACL2s functions we consider, we specify the semantics of the functions only in
the case that the signature of the function is satisfied, i.e., only for expressions. If the input
contract is violated, then we say that a contract violation has occurred and the function
does not evaluate to anything; hence, it does not return a result. For example, as we have
seen (if 1 3 4) is not an expression. If you try to evaluate it you will get an error message
indicating that a contract violation has occurred.

Our first function, if, is an important and special function. In contrast to every other
function, if is evaluated in a lazy way by ACL2s. Here is how evaluation works. To evaluate

J(if test then else)K
ACL2s performs the following steps.

1. First, ACL2s evaluates test , i.e., it computes JtestK.
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2. If JtestK = t, then ACL2s returns JthenK.
3. Otherwise, it returns JelseK.

Notice that test is always evaluated, but only one of then or else is evaluated. In contrast,
for all other functions we define, ACL2s will evaluate them in a strict way by evaluating all
of the arguments to the function and then applying the function to the evaluated results.

Examples of the evaluation of if expressions include the following:

J(if t nil t)K = nil

J(if nil 3 4)K = 4

Here is a more complex if expression.

(if (if t nil t) 1 2)

This may be confusing because it seems that the test of the if is a List, not a Boolean.
However, notice that to evaluate an if, we evaluate the test first, i.e.:

J(if t nil t)K = nil

Therefore,
J(if (if t nil t) 1 2)K = J2K = 2

The next function we consider is equal.

equal : All× All → Boolean

J(equal x y)K is t if JxK = JyK and nil otherwise.
Notice that equal always evaluates to t or nil.
Here are some examples.

J(equal 3 nil)K = nil

J(equal 0 0)K = t

J(equal (if t nil t) nil)K = t

That’s it for the built-in Booleans constants and functions.
Let us now define some utility functions.
We start with booleanp, whose signature is as follows.

All → Boolean

The name is the concatenation of the word “boolean” with the symbol “p.” The “p”
indicates that the function is a predicate, a function that returns t or nil. We will use this
naming convention in ACL2s (most of the time). Other Lisp dialects indicate predicates
using other symbols, e.g., Scheme uses “?” (pronounced “huh”) instead of “p.”

Here is how we define functions with contracts in ACL2s. The check= forms allow us to
write down what we expect our function will return on various legal inputs.

(defunc booleanp (x)

:input-contract ...
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:output-contract ...

(if (equal x t)

t

(equal x nil)))

(check= (booleanp t) t)

(check= (booleanp nil) t)

(check= (booleanp 12) nil)

The contracts were deliberately elided. We will add them shortly, but first we discuss
how to evaluate expressions involving booleanp.

How do we evaluate (booleanp 3)?
J(booleanp 3)K

= { Semantics of booleanp }
J(if (equal 3 t) t (equal 3 nil))K

= { Semantics of equal, J(equal 3 t)K= nil, Semantics of if }
J(equal 3 nil)K

= { Semantics of equal, J(equal 3 nil)K= nil }
nil

Above we have a sequence of expressions each of which is equivalent to the next expression
in the sequence for the reason given in the hint enclosed in curly braces. For example the
first equality holds because we expanded the definition of booleanp, replacing the formal
parameter x with the actual argument 3.

The next thing is: what is the input contract for booleanp?
It is t because there are no constraints on the input to the function. All recognizers will

have an input contract of t. A recognizer is a function that given any element of the ACL2s
universe recognizes whether it belongs to a particular subset. In the case of booleanp, the
subset being recognized is the set of Booleans {t, nil}.

What about the output contract? Since booleanp is a recognizer it returns a Boolean!
We express this as follows:

(booleanp (booleanp x))

So, all together we have:

(defunc booleanp (x)

:input-contract t

:output-contract (booleanp (booleanp x))

(if (equal x t)

t

(equal x nil)))

What does the contract mean? Well, let us consider the general case. Say that function
f with parameters x1, . . . , xn has the input contract ic and the output contract oc, then
what the contract means is that for any assignment of values from the ACL2s universe to
the variables x1, . . . , xn, the following formula is always true.

ic implies oc
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Hence, the contract for booleanp means that for any element of the ACL2s universe, x,

t implies (booleanp (booleanp x))

If we wanted to make the universal quantification and the implication explicit, we would
write the following, where the domain of x is implicitly understood to be All.

〈∀x :: t ⇒ (booleanp (booleanp x))〉
Notice that by the relationship between ⇒ (implication) and if, the above is equivalent

to

〈∀x :: (if t (booleanp (booleanp x)) t)〉
By the semantics of if, we can further simplify this to

〈∀x :: (booleanp (booleanp x))〉
So, for any ACL2s element x, booleanp returns a boolean.
Let us continue with more basic definitions.

and : Boolean× Boolean → Boolean

(defunc and (a b)

:input-contract (if (booleanp a) (booleanp b) nil)

:output-contract (booleanp (and a b))

(if a b nil))

implies : Boolean× Boolean → Boolean

(defunc implies (a b)

:input-contract (and (booleanp a) (booleanp b))

:output-contract (booleanp (implies a b))

(if a b t))

or : Boolean× Boolean → Boolean

(defunc or (a b)

:input-contract (and (booleanp a) (booleanp b))

:output-contract (booleanp (or a b))

(if a t b))

How do we evaluate the above? Simple:
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J(or t nil)K
= { Definition of or }

J(if t t nil)K
= { Semantics of if }

If JtK = nil then JnilK else JtK
= { Constants evaluate to themselves }

If t = nil then nil else t

= { t is not nil }
t

Exercise 2.1 Define: not, iff, xor, and other Boolean functions.

not : Boolean → Boolean

(defunc not (a)

:input-contract (booleanp a)

:output-contract (booleanp (not a))

(if a nil t))

iff : Boolean× Boolean → Boolean

(defunc iff (a b)

:input-contract (and (booleanp a) (booleanp b))

:output-contract (booleanp (iff a b))

(if a b (not b)))

xor : Boolean× Boolean → Boolean

(defunc xor (a b)

:input-contract (and (booleanp a) (booleanp b))

:output-contract (booleanp (xor a b))

(if a (not b) b))

2.3 Numbers

We have the following built-in recognizers:

integerp : All → Boolean

rationalp : All → Boolean

Here is what they mean.
J(integerp x)K is t iff JxK is an integer.
J(rationalp x)K is t iff JxK is a rational.
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Note that integers are rationals. This is just a statement of mathematical fact.
Notice also that ACL2s includes the real rationals and integers, not approximations or

bounded numbers, as you might find in most other languages, including C and Java.
We also have the following functions.

+ : Rational× Rational → Rational

* : Rational× Rational → Rational

< : Rational× Rational → Boolean

unary-- : Rational → Rational

unary-/ : Rational → Rational

Wait, what about (unary-/ 0)? The contract really is:

unary-/ : Rational \ {0} → Rational

How do we express this kind of thing?

(defunc unary-/ (a)

:input-contract (and (rationalp a) (not (equal a 0)))

...)

The semantics of the above functions should be clear (from elementary school). Here are
some examples.

J(+ 3/2 17/6)K = 13/3

J(* 3/2 17/6)K = 17/4

J(< 3/2 17/6)K = t

J(unary-- -2/8)K = 1/4

J(unary-/ -2/8)K = -4

Exercise 2.2 Define subtraction on rationals - and division on rationals /. Note that the
second argument to / cannot be 0.

Let’s define some more functions, starting with a recognizer for positive integers.

posp : All → Boolean

(defunc posp (a)

:input-contract t

:output-contract (booleanp (posp a))

(if (integerp a)

(< 0 a)

nil))

What if we tried to define posp as follows?

(defunc posp (a)

:input-contract t
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:output-contract (booleanp (posp a))

(and (integerp a)

(< 0 a)))

Well, notice that the contract for < is that we give it two rationals. How do we know
that a is rational? What we would like to do is to test that a is an integer first, before
testing that (< 0 a), but the only way to do that is to use if. This is another reason why
if is special. When checking the contracts of the then branch of an if, we can assume
that the test is true; when checking the contracts of an else branch, we can assume that
the test is false. No other ACL2s function gives us this capability. If we want to collect
together assumptions in order to show that contracts are satisfied, we have to use if.

Exercise 2.3 Define natp, a recognizer for natural numbers.

We also have built-in

numerator : Rational → Integer

denominator : Rational → Pos

J(numerator a)K is the numerator of the number we get after simplifying JaK.
J(denominator a)K is the denominator of the number we get after simplifying JaK.
To simplify an integer x, we return x.
To simplify a number of the form x/y, where x is an integer and y a natural number,

we divide both x and y by the gcd(|x|, y) to obtain a/b. If b = 1, we return a; otherwise we
return a/b. Note that b (the denominator) is always positive.

Since rational numbers can be represented in many ways, ACL2s returns the simplest
representation, e.g.,

J2/4K = 1/2

J4/2K = 2

J132/765K = 44/255

2.4 Other Atoms

Symbols and numbers are atoms. The ACL2s universe includes other atoms, such as strings
and characters. For example, "hello" is a string and #\A is a character. Strings and
characters evaluate to themselves.

2.5 Lists

Lists allow us to create non-atomic data.
Our first built-in function is a recognizer for conses.

consp : All → Boolean



12 Reasoning About Programs

Conses are non-empty lists and are comprised of a first element and the rest of the list.
Here are the functions for accessing the first and rest of a cons.

first : Cons → All

rest : Cons → All

We now define listp, a recognizer for lists, as follows.

listp : All → Boolean

(defunc listp (l)

:input-contract t

:output-contract (booleanp (listp l))

(if (consp l)

(listp (rest l))

(equal l () )))

The last built-in function is:

cons : All× List → Cons

The semantics of the built-in functions is given by the following rules. Notice that the
second argument to cons can either be () or a cons.

J(cons x () )K = (JxK)
J(cons x y)K = (JxK ...) where JyK = (. . .)

J(consp x)K = t iff JxK is of the form (. . .) but not ().

Notice that since consp is a recognizer it returns a Boolean. So, if JxK is an atom, then
then J(consp x)K = nil.

Here are some examples.

J(consp 3)K = nil

J(consp (cons nil nil))K = t

J(consp nil)K = nil

The semantics of first and rest is given with the following rules.

J(first x)K = a,where JxK = (a . . .) for some a, . . .

J(rest x)K = (. . .),where JxK = (a . . .) for some a, . . .

Here are some examples.

J(first (cons (if t 3 4) (cons 1 () )))K = 3

J(first (rest (cons (if t 3 4) (cons 1 () ))))K = 1

J(rest (cons (if t 3 4) (cons 1 (if t nil t))))K = (cons 1 () )
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If you try evaluating (rest (cons (if t 3 4) (cons 1 (if t () t)))) at the ACL2s
command prompt, here is what ACL2s reports.

(1)

Since lists are so prevalent, ACL2s includes a special way of constructing them. Here is an
example.

(list 1)

is just a shorthand for (cons 1 ()), e.g., notice that asking ACL2s to evaluate

(equal (LIST 1) (cons 1 ()))

results in t. What is list really? (By the way notice that symbols in ACL2s, such as list,
are case-insensitive.) It is not a function. Rather, it is a macro. There is a lot to say about
macros, but for our purposes, all we need to know is that a macro gives us abbreviation
power. In general

(list x1 x2 · · · xn)

abbreviates (or is shorthand for)

(cons x1 (cons x2 · · · (cons xn nil) · · · ))

2.6 Contract Violations

Consider

(unary-/ 0)

If you try evaluating this, you get an error because you violated the contract of unary-/.
When a function is called on arguments that violate the input contract, we say that the
function call resulted in an input contract violation. If such a contract violation occurs, then
the function does not return anything.

Contract checking is more subtle than this, e.g., consider the following definition.

(defunc foo (a)

:input-contract (integerp a)

:output-contract (booleanp (foo a))

(if (posp a)

(foo (- a 1))

(rest a)))

ACL2s will not admit this function unless it can prove that every function call in the
body of foo satisfies its contract, a process we call body contract checking and that foo

satisfies its contract, a process we call function contract checking. These checks yield five
body contract conjectures and one function contract conjecture.

Exercise 2.4 Identify all the body contract checks and function contract checks that the
definition of foo gives rise to. Which (if any) of these conjectures is always true? Which
(if any) of these conjectures is sometimes false?
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Notice that contract checking happens even before the function is admitted. This is called
“static” checking. Another option would have been to perform this check “dynamically.”
That is, all the contract checking above would be performed as the code is running.

2.7 Termination

All ACL2s function definitions have to terminate on all inputs that satisfy the input contract.
For example, consider the following “definition.”

(defunc listp (a)

:input-contract t

:output-contract (booleanp (listp a))

(if (consp a)

(listp a)

(equal a nil)))

ACL2s will not accept the above definition and will report that it could not prove
termination.

Let’s look at another example.
Define a function that given n, returns 0 + · · ·+ n.
Here is one possible definition:

;; sum-n: integer -> integer

;; Given integer n, return 0+1+2+...+n

(defunc sum-n (n)

:input-contract (integerp n)

:output-contract (integerp (sum-n n))

(if (equal n 0)

0

(+ n (sum-n (- n 1)))))

(check= (sum-n 5) (+ 1 2 3 4 5))

(check= (sum-n 0) 0)

(check= (sum-n 3) 6)

Exercise 2.5 The above function does not terminate. Why? Change only the input con-
tract so that it does terminate. Next, change the output contract so that it gives us more
information about the type of values sum-n returns.

2.8 Beginner Mode

At this point, we transition from “Bare Bones” mode to “Beginner Mode” mode. If you are
following along with ACL2s, switch to“Beginner” mode, which is indicated by “B” in the
prompt.

Recall the issue we had when we defined posp? If not, review the notes. In Beginner
Mode we will address this issue.

It turns out to be really useful if Boolean functions such as and, or and not are just
abbreviations for if. This is actually the case in Beginner mode. The Boolean functions
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are really macros that get expanded into if expressions. As was the case with the list

macro, and and or accept an arbitrary number of arguments. For example,

1. (and) abbreviates t

2. (and p) abbreviates p

3. (and p q) abbreviates (if p q nil)

4. (and p q r) abbreviates (if p (if q r nil) nil)

5. (or) abbreviates nil

6. (or p) abbreviates p

7. (or p q) abbreviates (if p p q)

and so on. This makes writing contracts simpler.
Here is an example. Suppose we want to define a function that given an integer ≥ −5

checks to see if it is > 5.
Here is how one might define the function.

(defunc >5 (x)

:input-contract (and (>= x -5) (integerp x))

:output-contract (booleanp (>5 x))

(> x 5))

ACL2s does not accept the definition. What’s the problem? Well, ACL2s checks the
contracts for the expressions in the input and output contracts of a function definition! This
is called input contract checking and output contract checking.

What’s the contract for >=? That it is given rationals, but we don’t know that x is a
rational!

We have to write our input contracts so that they accept anything as input.
Here’s a second attempt.

(defunc >5 (x)

:input-contract (and (integerp x) (>= x -5))

:output-contract (booleanp (>5 x))

(> x 5))

This works, in part because and is really an abbreviation for if.
When checking output contracts, we get to assume that the input contract holds. In

the above definition, that means that we get to assume that x is an integer that is ≥ −5.
This assumption allows contract checking to pass on (> 5). Contract checking also passes
on booleanp, as it has an input contract of t.

Next, we will define even-natp, a function that given a natural number determines
whether it is even. We will start with a recursive definition and here are some tests.

(check= (even-natp 0) t)

(check= (even-natp 1) nil)

(check= (even-natp 22) t)

Here is the definition.

(defunc even-natp (x)
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:input-contract (natp x)

:output-contract (booleanp (even-natp x))

(if (equal x 0)

t

(not (even-natp (- x 1)))))

This is a data-driven definition. Check the function and body contracts.
The astute reader will have noticed that we could have written a non-recursive function,

e.g.:

(defunc even-natp (x)

:input-contract (natp x)

:output-contract (booleanp (even-natp x))

(natp (/ x 2)))

This is not a data-driven definition. It required more insight.
Next, let’s define a version of the above function that works for integers. Again, we will

write a recursive definition. Here are some tests.

(check= (even-integerp 0) t)

(check= (even-integerp 1) nil)

(check= (even-integerp -22) t)

The integer datatype can be characterized as follows.

Int : 0 | Int + 1 | Int − 1

So, a basic way of defining recursive functions over the integers is to have three cases, two
of which are recursive, as per the data definition above.

(defunc even-integerp (x)

:input-contract (integerp x)

:output-contract (booleanp (even-integerp x))

(cond ((equal x 0) t)

((< x 0) (not (even-integerp (+ x 1))))

(t (not (even-integerp (- x 1))))))

The above function uses cond, a macro that expands into a nest of ifs. In general,

(cond (c1 e1)

(c2 e2)

...

(cn en))

expands into

(if c1

e1

(if c2

e2

...

(if cn

en

nil)))
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Notice the last nil! For the sake of code clarity, we will always make the last test of a
cond (cn above) equal to t. That is, we will always make the trailing else case explicit.

2.9 Contracts

Even though contracts can be quite complicated, we will mostly restrict the use of contracts
as indicated below.

(defunc f (x1 ... xn)

:input-contract t | (R1 xi) | (and (R1 y1) ... (Rm ym))

:output-contract (R (f x1 ... xn))

...)

The vertical bar | denotes a choice and our input contracts are of three possible forms,
where the yi are arguments to f without repetitions and R, Ri are recognizers.

Notice that if our contracts are of this form, then contract checking of the :input and
:output contracts is easy. We are using recognizers everywhere, so we know that contract
checking will succeed. For this reason, we often do not explicitly mention input and output
contract checking.

2.10 Helpful Functions

In this section, we introduce several helpful functions. As you read this section, try to define
the functions on your own. These functions are built-in to Beginner mode.

The endp function checks if a list is empty.

(defunc endp (l)

:input-contract (listp l)

:output-contract (booleanp (endp l))

(not (consp l)))

Notice that endp is not a recognizer because the input contract is not t.
Can we make the input-contract t? Yes. Consider the following function.

(defunc atom (l)

:input-contract t

:output-contract (booleanp (atom l))

(not (consp l)))

The functions atom and endp have the same output contract and body. Atom is a
recognizer (but for historical reasons does not end with a p). Atom, as the name implies,
recognizes atoms. Why do we want two functions with the same body but different input
contracts? Well, the idea is that we should only use endp when we are checking a list and
using endp gives us more guarantees. If we make a mistake, then by using endp, we enable
ACL2s to find the error for us. On the other hand, we should only use atom when in fact
we might want to check non-lists.

The len function returns the length of a list. This is the simplest example of a data-
driven definition. The idea is to define len using a template derived from the contract of its
input variable, which is a list. A list is either empty or consists of the first element of the
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list and the rest of the list. Therefore our template also has two cases and in the second
case, we can assume that len returns the correct answer on the rest of the list, so all that
is left is to add one to the answer.

(defunc len (l)

; Returns the length of list l.

:input-contract (listp l)

:output-contract (natp (len l))

(if (endp l)

0

(+ 1 (len (rest l)))))

Notice that the function definition above has a comment describing the function. A
semicolon (;) denotes the beginning of a comment and the comment lasts until the end of
the line.

The app function appends two lists together. Let’s try using a data-driven definition.
There are two arguments. In cases where there are multiple arguments, we have to think
about which of the arguments should control the recursion in app. It is simpler when only
one argument is needed, so let’s try it with the first argument. You might find it useful to
either visualize how app should work, or to try it on some examples, or to develop a simple
notation to experiment with your options. Here is what such a notation might look like.
First, let us see what happens if we try recurring on the first argument of app. As was the
case with the definition of len, we have two cases to consider: either the first argument is
the empty list or it is a non-empty list. The first case is easy.

app () Y = Y

For the second case, we might come up with the following.

app (cons a B) Y = aBY = cons a (app B Y)

Notice that the first argument to app is a cons and we are using capital letters to denote
lists and lower-case letters to denote elements. The aBY just indicates that in the answer
first we want the element a and then the lists B and Y. How can we express that using a
recursive call of app on the rest of the first argument? By consing a onto the list obtained
by calling app on B and Y.

(defunc app (x y)

; App appends two lists together

:input-contract (and (listp x) (listp y))

:output-contract (listp (app x y))

(if (endp x)

y

(cons (first x) (app (rest x) y))))

What if we try recurring on the second argument to app? Then the base case is easy.

app X () = X

For the recursive case, we might come up with the following.

app X (cons a B) = XaB = (app (?? X a) B)
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Notice that the second argument in the recursive call has to be in terms of B, the rest of the
second argument to app. The ?? function should add a at the end of X. We may call such
a function snoc since it is the symmetric version of cons. We do not have such a function,
so if we want to recur on the second argument, we need to define it.

Exercise 2.6 Define: snoc and a version of app that recurs on its second argument, as
outlined above.

Notice that data-driven definitions are guaranteed to terminate because in the recursive call
the argument upon which the definition is based is “decreasing.” We will make this precise
later.

The rev function reverses a list.

(defunc rev (x)

; Rev reverses a list

:input-contract (listp x)

:output-contract (listp (rev x))

(if (endp x)

()

(app (rev (rest x)) (list (first x)))))

2.11 Quote

Even though not every expression is an object in the universe, it is the case that for every
object in the universe, there is an expression that evaluates to it. An easy way to denote
such an object is to use quote. For example ’(if 1) denotes the two element list whose
first element is the symbol if and whose second element is 1.

Certain atoms, including numbers, but also characters and strings evaluate to themselves,
so we do not normally quote such atoms. However, when non-Boolean symbols are used in
an expression we have to be careful because symbols are used as variables. For example, x
in the body of rev (above) is a variable. If we really want to denote the symbol r, we have
to write ’r. Consider the difference between (cons r l) and (cons ’r l). In the first
expression we are consing the value corresponding to the variable r to l, but in the second,
we are consing the symbol r to l.

2.12 Let

A let expression:

(let ((v1 x1)

...

(vn xn))

body)

binds its local variables, the vi, in parallel, to the values of the xi, and evaluates body
using that binding.

For example:
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(let ((x ’(a b c))

(y ’(c d)))

(app (app x y) (app x y)))

evaluates to (a b c c d a b c c d). This saves us having to type ’(a b c) and ’(c

d) multiple times. Notice how the use of quotes also simplifies things, e.g., instead of (list
’a ’b ’c) we can write ’(a b c).

Maybe we can avoid having to type (app x y) multiple times. What about?

(let ((x ’(a b c))

(y ’(c d))

(z (app x y)))

(app (app x y) z))

This does not work. Why not? Because let binds in parallel, so x and y in the z binding
are not yet bound.

What we really want is a binding form that binds sequentially. That is what let* does.

(let* ((v1 x1)

...

(vn xn))

body)

binds its local variables, the vi, sequentially, to the values of the xi, and evaluates body
using that binding. So the following works.

(let* ((x ’(a b c))

(y ’(c d))

(z (app x y)))

(app (app x y) z))

As does this further simplified expression.

(let* ((x ’(a b c))

(y ’(c d))

(z (app x y)))

(app z z))

So, let and let* give us abbreviation power.

2.13 Testing

Instead of

(check= (app (list 1 2) (list)) (list 1 2))

we can write

(test? (equal (app (list x y) (list)) (list x y)))

The above means that we are claiming that for all elements of the ACL2s universe, x
and y,

(app (list x y) (list)) is equal to (list x y)
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If we only had access to constants, like 1 and 2, we would have to write out an infinite
number of tests to say the same thing.

ACL2s also supports thm forms. If we use thm instead of test?, we are asking ACL2s
to prove the property (not just test it). ACL2s will fail if it cannot find a proof (even if the
property is true). We will not use thm until later, when we get to theorem proving because
thm can fail even if the property holds. Sometimes even test? will report that it proved the
property, but all that is required for test? to succeed is that no counterexample is found.

To summarize test?, tells ACL2s to test the property. ACL2s might be able to prove it,
in which case we know that it is true. If it can’t, it might find a counterexample, in which
case we know it is false. If neither case holds, the form succeeds and that means ACL2s could
not prove that the property is true and after testing it, it did not find a counterexample.
Test? is highly customizable, e.g., we can tell it how much testing to perform. To see more
information, issue the following command on the ACL2s REPL.

:doc test?

Let’s explore test? in more detail, using the functions even-natp and even-integerp,
defined previously.

Here is a test? property that claims that even-integerp and even-natp agree on
natural numbers.

(test? (implies (natp n)

(equal (even-integerp n)

(even-natp n))))

This is a property of our code. This gives us way more power than check= because if
the property is true, then that corresponds to an infinite number of checks.

Test? forms should be of the form

(test? (implies hyp concl))

where the hypothesis (or antecedent) hyp is of the form

(and (R1 x1) ... (Rn xn) ...)

and all the Ri’s are recognizers and the xis are variables appearing in the conclusion,
concl. The second ... can be some other, extra assumptions.

We have to perform contract checking on all the non-recognizers. The stuff after the
recognizers must satisfy its contracts, assuming everything before it holds. The functions in
the conclusion must satisfy their contracts assuming that the hypothesis holds.

Consider the test? above. To satisfy the input contract of even-integerp, the hy-
pothesis must imply that n is an integer and to satisfy the input contract of even-natp the
hypothesis must imply that n is a natural number, hence the natp check suffices for contract
checking the property. What if we replace natp by integerp? Then contract checking fails
because even-natp is only defined on natural number so we have no idea what it does with
negative integers.

Now, consider a second test? form.

(test? (implies (and (integerp n)

(< n 0))

(equal (even-integerp n)

(even-natp (* n -1)))))
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Go over contract checking. Note that < is OK, because n is an integer and even-natp is
OK because n is an integer less than 0, so (* n -1) is a natural number.

Notice that these two properties characterize even-integerp in terms of even-natp, so
they show another way we could have defined even-integerp:

(defunc even-integerp (x)

:input-contract (integerp x)

:output-contract (booleanp (even-integerp x))

(if (natp x)

(even-natp x)

(even-natp (* x -1))))

What if we write the following. Does contract checking succeed?

(test? (implies (and (natp n) (< 20/3 n))

(equal (even-integerp n)

(even-natp n))))

Yes. The extra assumption (< 20/3 n) poses no problem because 20/3 and n are both
rationals.

What about the following?

(test? (implies (< 20/3 n)

(equal (even-integerp n)

(even-natp n))))

Contract checking fails and reveals an error in our property because < does not have its
contracts satisfied and neither do the functions in the conclusion.

2.14 Data Definitions

ACL2s provides a powerful data definition framework that allows us to define new data types.
New data types are created by combining primitive types using defdata type combinators.

The primitive types include rational, nat, integer and pos whose recognizers are
rationalp, natp, integerp and posp, respectively. Notice the naming convention we use:
we append the character “p” to typenames to obtain the name of their recognizer. In ACL2s,
the type all includes everything in the universe, i.e., every type is a subtype (subset) of
all.

We introduce the ACL2s data definition framework via a sequence of examples.
Singleton types allow us to define types that contain only one object. For example:

(defdata one 1)

All data definitions give rise to a recognizer. The above data definition gives rise to the
recognizer onep.

Enumerated types allow you to define finite types.

(defdata name (enum ’(emmanuel angelina bill paul sofia)))

Range types allow you to define a range of numbers. The two examples below show how
to define the rational interval [0..1] and the integers greater than 264.



A Simple Functional Language 23

(defdata probability (range rational (0 <= _ <= 1)))

(defdata big-nat (range integer ((* 1024 1024) < _)))

Notice that we need to provide a domain, which is either integer or rational, and the set
of numbers is specified with inequalities using < and <=. One of the lower or upper bounds
can be omitted, in which case the corresponding value is taken to be negative or positive
infinity.

Product types allow us to define structured data. The example below defines a type
consisting of list with exactly two strings.

(defdata fullname (list string string))

Records are product types, where the fields are named. For example, we could have
defined fullname as follows.

(defdata fullname-rec (record (first . string)

(last . string)))

In addition to the recognizer fullname-recp, the above type definition gives rise to the
constructor fullname-rec which takes two strings as arguments and constructs a record of
type fullname-rec. The type definition also generates the accessors fullname-rec-first
and fullname-rec-last that when applied to an object of type fullname-rec return the
first and last fields, respectively.

We can create list types using the listof combinator as follows.

(defdata loi (listof integer))

This defines the type consisting of lists of integers.
Union types allow us to take the union of existing types. Here is an example.

(defdata intstr (oneof integer string))

Recursive type expressions involve the oneof combinator and product combinations,
where additionally there is a (recursive) reference to the type being defined. For example,
here is another way of defining a list of integers.

(defdata loi (oneof nil (cons integer loi)))

The data definition framework has more advanced features, e.g., it supports mutually-
recursive types, recursive record types, map types, custom types, and so on. We will intro-
duce such features as needed.

2.15 Design Recipe

Consider the following function definition.

(defunc foo (x y z)

:input-contract (and (natp x) (natp y) (true-listp z))

...)

The input contract, which specifies the types of the inputs, dictates that you should have
at least 8 tests because for each variable, there should be as many tests as there are cases
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in the data definition of its type and all possible combinations of tests spanning multiple
variables should be considered. That gives rise to 2 ∗ 2 ∗ 2 = 8 tests. So you should have 8
tests of the form.

(check= testi ansi)

Tests and examples are very important. Use them to understand the specification, e.g.,
by considering all cases. Visualize the computation; this helps you write the code. If you
have difficulty writing code for the general case, use examples as a guide.

Most of the code we are going to look at is data driven: we will be recurring by counting
down by 1 or by traversing a list. Take advantage of this as follows.

1. Identify the variable(s) that control the recursion.

2. Once you do that, write down the template consisting of the base cases and recursive
cases.

3. If you get stuck, look at the examples and generalize.

4. After you write your program, evaluate it on the examples you wrote.

Contracts play a key role in how we think about function definitions. Make sure you
understand the contracts for all the functions you use. Many programming errors students
make are due to contract violations, so as you are developing your program check to see
that every function call respects its contract.

Take advantage of test? to enhance the testing we get from check=. Use test? to write
down properties that should be true of the functions you define. The more coverage your
tests provide the better. When designing test? properties, make the properties implemen-
tation independent, e.g., if a function is supposed to remove duplicates, but the exact order
in which elements appear in the output is not specified, then write test? properties that do
not assume a particular order. This makes it possible to go back and modify the function in
the future without having test? forms fail. Notice that the same advice holds for check=
forms. For example, instead of checking that the output is some particular list, check that
it is a permutation of the list.

Efficiency is a significant issue when designing systems, but it is mostly an orthogonal
issue. For example, if we want to develop a sorting algorithm, then the specification for a
sorting algorithm is independent of the implementation. This separation of concerns allows
us to design systems in a modular, robust way. In this course, we will not care that much
about efficiency. It will come up and we will mention it, but our emphasis will be on simple
definitions and specifications.

The templates that arise when defining functions over lists and natural numbers should
be obvious, but here is a brief review. Recall the data definition for lists.

List : () | (cons All List)

We say that cons is a constructor. Now, when we define recursive functions, we use the
destructors first and rest to destruct a cons into its constituent parts. Functions defined
this way work because every time I apply a destructor I decrease the size of an element.
What about nat? The idea is similar.

Nat : 0 | Nat + 1
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So, + 1 is a constructor and the corresponding destructor used when we define recursive
functions is - 1. What about integer?

Int : 0 | Int + 1 | Int − 1

So, + 1 and - 1 are the constructors and the corresponding destructors used when we define
recursive functions are - 1 and + 1, respectively.

We now discuss what templates user-defined datatypes that are recursive give rise to.
Many of the datatypes we define are just lists of existing types. For example, we can define
a list of rationals as follows.

(defdata lor (listof rational))

If we define a function that recurs on one of its arguments, which is a list of rationals, we
just use the list template and can assume that if the list is non-empty then the first element
is a rational and the rest of the list is a list of rationals.

If we have a more complex data definition, say:

(defdata PropEx (oneof boolean symbol

(list UnaryOp PropEx)

(list Binop PropEx PropEx)))

Then the template we wind up with is exactly what you would expect from the data
definition.

(defunc foo (px ...)

:input-contract (and (PropExp px) ...)

:output-contract (... (foo px ...))

(cond ((booleanp px) ...)

((symbolp px) ...)

((UnaryOpp (first px)) ... (foo (second px)) ...)

(t ...(foo (second px)) ... (foo (third px)) ...)))

Notice that in the last case, there is no need to check (BinOpp (first px)), since it
has to hold, hence the t. Also, for the recursive cases, we get to assume that foo works
correctly on the destructed argument ((second px) and (third px)).

All of your functions where the recursion is governed by variables of type propexp should
use the above template.

We now explore data definitions in a little more detail. Recall the data definition for
lists.

List : () | (cons All List)

We say that cons is a constructor. Now this definition is recursive, i.e., List is defined in
terms of itself. Why does such a circular definition make sense?

The above is really a fixpoint definition of lists. This view allows us to do away with the
circularity. Here’s the idea. Start with

L0 = {()}

and then create all conses of the form

(cons x l)
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and repeat, i.e., we can define

Li+1 = {()} ∪ {(cons x l) : x ∈ All ∧ l ∈ Li}

and now we define List to be the union of all the Li.

List =
⋃

i∈N
Li

When we define recursive functions using the design recipe, we use the destructors first

and rest to destruct a cons into its constituent parts. Functions defined this way make
sense because they terminate: every time we apply a destructor we take an element in Li+1

(let i + 1 be the smallest index such that the element is in Li+1 and notice that because
first we check that the element is not the empty list, we know that the element is not in L0)
and get, at worst, an element in Li. Therefore, after finitely many steps we have to reach
the base case and therefore the function is guaranteed to terminate. In this way, we have
shown how to remove the apparent circularity in the definition of lists.

Let’s rephrase this to see why we used the term fixpoint. We start by defining the
following function.

f(Y ) = {()} ∪ {(cons x l) : x ∈ All ∧ l ∈ Y }

A fixpoint for f is a set Z such that f(Z) = Z. Does f have a fixpoint? Yes. List ! That is:

f(List) = List

How do we compute a fixpoint? Well, we take the limit of f as follows

List = lim
i∈N

f i+1(∅)

where f i is the i-fold composition of f so f0(X) = X, f1(X) = f(X), f2(X) = f(f(X)), . . ..
This is what is called the least fixpoint. Notice that f i(∅) = Li.

2.16 Program Mode

Sometimes it is helpful to temporarily turn off theorem proving in ACL2s. Why would you
want to? Well, say you want to quickly prototype your function definitions because ACL2s
is complaining or you just want to use ACL2s without all the theorem proving turned on.

The answer is yes you can. Just put this one line right before the point you want to
switch from ACL2s’s normal mode, called logic mode, to program mode.

:program

ACL2s will still test contracts and will report a contract violation if it finds it. Think of
this as free testing. ACL2s will not worry about termination or about proving any theorems
at all (so body contracts and function contracts are not proved).

Once you’re done exploring, you can undo past the :program command to go back to
logic mode, or you can even switch back and forth with the following command

:logic

If you mix up modes like this, then you will not be able to define logic mode functions
that depend on program mode functions.
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2.17 Dealing with Definition Failures

While it’s amazing that ACL2s can statically prove that your functions satisfy their contracts
automatically (you’ll see how amazing this is once we start proving theorems), unfortunately,
there will be times when you give it a function definition that is logically fine, but, alas,
ACL2s cannot prove that it is correct.

If this has ever happened to you, read on.
What do you do in such a situation?
Well, there are two options I want to show you. Let’s go through them in turn.
The first option is to revert to “program mode” and turn off testing. In program mode

and with testing off, ACL2s behaves the way most programming languages do: ACL2s does
not try to prove or test any conjectures. Don’t resort to using Racket or Lisp or whatever.
Do this instead! For example, suppose you have the following definition.

(defunc ! (x)

:input-contract (integerp x)

:output-contract (integerp (! x))

(if (equal x 0)

1

(* x (! (- x 1)))))

ACL2s complains about something (termination), so you can turn off testing and revert
to program mode as follows. Note: it is important to turn off testing before you going to
program mode.

(acl2s-defaults :set testing-enabled nil)

:program

Now, if you submit the function definition, ACL2s accepts it.

(defunc ! (x)

:input-contract (integerp x)

:output-contract (integerp (! x))

(if (equal x 0)

1

(* x (! (- x 1)))))

Now you can test your code. For example:

(foo 10)

works as expected, but

(foo -1)

leads to a stack overflow (which indicates a termination problem).
Unfortunately, if you define a program mode function, then every new function that

depends on it will also have to be a program mode function. My suggestion is that you do
this to debug your code. If you can fix what the problem is great. If not, then it is better
to use the next option if you can.

The first option was draconian. You turned off the power of the theorem prover com-
pletely.
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The second option represents a more measured response. Instead of turning off the
theorem prover, we tell it to try proving termination, etc., but if it fails, to continue anyway.
In essence, we are asking ACL2s for its best effort.

(acl2s-defaults :set testing-enabled nil)

(set-defunc-termination-strictp nil)

(set-defunc-function-contract-strictp nil)

(set-defunc-body-contracts-strictp nil)

The first command above is as before: we turn off testing. You don’t have to do that,
but sometimes it helps (e.g., if you defined a non-terminating function and we try to test
it, you’ll get a stack overflow).

The other commands tell ACL2s to not be strict with regards to termination, function
contracts and body contracts. After ACL2s finishes processing your function definition, it
gives you a little summary of what it was able to prove.

Let’s see what happens with our above function definition. Here is what ACL2s outputs.

...

**The definition of ! was accepted in program mode!!

Function Name : !

Termination proven ------ [ ]

Main Contract proven ---- [ ]

Body Contracts proven --- [ ]

This means that neither termination, nor the main contract, nor the body contracts were
proven.

If we fix the contract problem, e.g., as follows.

(defunc ! (x)

:input-contract (natp x)

:output-contract (integerp (! x))

(if (equal x 0)

1

(* x (! (- x 1)))))

Then ACL2s does prove everything and now the output looks as follows.

...

Function Name : !

Termination proven ------ [*]

Main Contract proven ---- [*]

Body Contracts proven --- [*]

So, the *’s tell you what parts of the function admission process was successful.
If you only need to do this for 1 function definition, you can revert back to the default

settings with the following commands:

(acl2s-defaults :set testing-enabled t)

(set-defunc-termination-strictp t)

(set-defunc-function-contract-strictp t)

(set-defunc-body-contracts-strictp t)

So, you can go back and forth and you can selectively turn testing on and off.
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If you get stuck on a homework problem, use the second option, but you can also use
the first option if you really need to. If your code is correct, you will get full credit either
way.


