
Reasoning About Programs
Panagiotis Manolios

Northeastern University

January 26, 2017
Version: 97



Copyright c©2017 by Panagiotis Manolios

All rights reserved. We hereby grant permission for this publication to be used for personal or
classroom use. No part of this publication may be stored in a retrieval system or transmitted
in any form or by any means other personal or classroom use without the prior written
permission of the author. Please contact the author for details.



1

Introduction

These lecture notes were developed for Logic and Computation, a freshman-level class taught
at the College of Computer and Information Science of Northeastern University. Starting
in Spring 2008, this is a class that all students in the college are required to take.

The goals of the Logic and Computation course are to provide an introduction to formal
logic and its deep connections to computing. Logic is presented from a computational
perspective using the ACL2 Sedan theorem proving system. The goal of the course is
to introduce fundamental, foundational methods for modeling, designing, specifying and
reasoning about computation. The topics covered include propositional logic, recursion,
contracts, testing, induction, equational reasoning, termination analysis, term rewriting, and
various proof techniques. We show how to use logic to formalize the syntax and semantics
of the core ACL2s language, a simple LISP-based language with contracts. We then use
the ACL2s language to formally reason about programs, to model systems at various levels
of abstraction, to design and specify interfaces between systems and to reason about such
composed systems. We also examine decision procedures for fragments of first-order logic
and how such decision procedures can be used to analyze models of systems.

The students taking the Logic and Computation class have already taken a program-
ming class in the previous semester, in Racket. The course starts by reviewing some basic
programming concepts. The review is useful because at the freshman level students benefit
from seeing multiple presentations of key concepts; this helps them to internalize these con-
cepts. For example, in past semesters I have asked students to write very simple programs
(such as a program to append two lists together) during the first week of classes and a
surprisingly large number of students produce incorrect code.

During the programming review, we introduce the ACL2s language. This is the language
we use throughout the semester and it is similar to Racket. The syntax and semantics of the
core ACL2s language are presented in a mathematical way. We provide enough information
so that students can determine what sequence of glyphs form a well-formed expression
and how to formally evaluate well-formed expressions potentially containing user-defined
functions with constants as arguments (this is always in a first-order setting). This is a
pretty big jump in rigor for students and is advanced material for freshmen students, but
they already have great intuitions about evaluation from their previous programming class.
This intuition helps them understand the rigorous presentation of the syntax and semantics,
which in turns helps strengthen their programming abilities.

The lecture notes are sparse. It would be great to add more exercises, but I have not done
that yet. Over the course of many years, we have amassed a large collection of homework
problems, so students see lots of exercises, and working through these exercises is a great
way for them to absorb the material, but the exercises are not in the notes. You can think
of the lecture notes as condensed notes for the course that are appropriate for someone who
knows the material as a study guide. The notes can also be used as a starting point by



2 CHAPTER 1. INTRODUCTION

students, who should mark them up with clarifications as needed when they attend lectures.
I advise students to read the lecture notes before class. This way, during class they can focus
on the lecture instead of taking notes and they are better prepared to ask for clarifications.

When I started teaching the class, I used the ACL2 book, Computer-Aided Reasoning, An
Approach by Kaufmann, Manolios and Moore. However, over the years I became convinced
that using an untyped first-order logic was not the optimal way of introducing logic and
computation to students because they come in with a typed view of the world. That’s not to
say they have seen type theory; they have not. But, they are surprised when a programming
language allows them to subtract a string from a rational number. Therefore, with the help
of my Ph.D. student Harsh Chamarthi, I have focused on adding type-like capabilities to
ACL2s. Most notably, we added a new data definition framework to ACL2s that supports
enumeration, union, product, record, map, (mutually) recursive and custom types, as well
as limited forms of parametric polymorphism. We also introduced the defunc macro, which
allows us to formally specify input and output contracts for functions. These contracts
are very general, e.g., we can specify that / is given two rationals as input, and that the
second rational is not 0, we can specify that zip is given two lists of the same length as
input and returns a list of the same length as output and so on. Contracts are also checked
statically, so ACL2s will not accept a function definition unless it can prove that the function
satisfies its contracts and that for every legal input and every possible computation, it is
not possible during the evaluation of the function being defined to be in a state where some
other function is poised to be evaluated on a value that violates its input contract. I have
found that a significant fraction of erroneous programs written by students have contract
violations in them, and one of the key things I emphasize is that when writing code, one
needs to think carefully about the contracts of the functions used and why the arguments
to every function call satisfy the function’s contract. Contracts are the first step towards
learning how to specify interfaces between systems. With the move to contracts, the ACL2
book became less and less appropriate, which led me to write these notes.

I have distributed these notes to the students in Logic and Computation for several
years and they have found lots of typos and have made many suggestions for improvement.
Thanks and keep the comments coming!



4

Equational Reasoning

We just finished studying propositional logic, so let’s start by considering the following
question:

Why do we need more than propositional logic?

After all, we were able to do a lot with propositional logic, including declarative design,
security and digital logic.

What we are really after, however, is reasoning about programs, and while propositional
logic will play an important role, we need more powerful logics.

To see why, let’s simplify things for a moment and consider conjectures involving numbers
and arithmetic operations.

Consider the conjecture:

Conjecture 1 a+ b = ba

What does it mean for this conjecture to be true or false?
Well, there is a source of ambiguity here. If a, b are constants (like 1, 2, etc.) then we

can just evaluate the equality and determine if it is true or not.
However, a and b are variables. This is similar to the propositional formulas we saw,

e.g.,

p ∧ q ⇒ p ∨ q

Recall that p and q are atoms, and the above formula is valid. What that means is that
no matter what value p and q have, the above formula is true. Another way of saying this
is that the above formula evaluates to true under all assignments.

In Conjecture 1, a and b range over a different domain than the Booleans, let’s say they
range over the rationals.

So, what we really mean when we say that conjecture 1 is valid (or true) is that for any
rational number a and any rational number b, a + b = ba. Another way of saying this is
that the above formula evaluates to true under all assignments. Notice the similarity with
the Boolean case.

Is Conjecture 1 a valid formula?
No. We can come up with a counterexample.
Is Conjecture 1 unsatisfiable?
No. It is both satisfiable and falsifiable. Again, this is exactly the kind of characterization

we used to classify Boolean formulas. How many assignments falsify the conjecture? How
many assignments satisfy the conjecture?

What about the following conjecture?



52 Reasoning About Programs

Conjecture 2 a+ b = b+ a

Can we come up with a counterexample?
No.
Is the formula valid?
Yes.
How do we prove that a conjecture is valid in the case of propositional logic? We use a

truth table, with a row per possible assignment, to show that no counterexample exists. A
counterexample is an assignment that evaluates to false.

Can we do something similar here?
Yes, but the number of assignments is unfortunately infinite. That means, we can never

completely fill in a table of assignments.
We need a radically new idea here.
We want something that allows us to do a finite amount of work and from that to deduce

that there are no counterexamples in the infinite table, were we even able to construct it.
Let’s look at how we might do this, but in the context of programs. First we start with

the definition of alen, a length function whose domain is All.

(defunc alen (l)

:input-contract t

:output-contract (natp (alen l))

(if (atom l)

0

(+ 1 (alen (rest l)))))

Consider the following conjecture:

Conjecture 3 (equal (alen (list x)) (alen x))

Is this conjecture true (valid) or false (falsifiable)?
What does it mean for Conjecture 3 to be true? That no matter what object of the

ACL2s universe x is, the above equality holds.
Conjecture 3 is false. Why?
Suppose that x = 1, then the conjecture evaluates to nil, i.e.,

J(equal (alen (list 1)) (alen 1))K = J(equal 1 0)K = nil

So, finding a counterexample is “easy.” All we have to do is to find an assignment under
which the conjecture evaluates to nil. This is just like the Boolean logic case.

Is Conjecture 3 unsatisfiable? No. Again, all we have to do is find one satisfying
assignment, e.g., x = (1). How many assignments falsify the conjecture? How many
assignments satisfy the conjecture?

What about:

Conjecture 4
(equal (alen (cons x (list z)))

(alen (cons y (list z))))

Here we can’t find a counterexample.
How can we go about proving that Conjecture 4 is valid?



Equational Reasoning 53

(alen (cons x (list z)))

= { Definition of alen, instantiation }
(if (atom (cons x (list z))) 0 (+ 1 (alen (rest (cons x (list z))))))

= { first-rest axioms }
(if (atom (cons x (list z))) 0 (+ 1 (alen (list z))))

= { Definition of atom }
(if (not (consp (cons x (list z)))) 0 (+ 1 (alen (list z))))

= { Definition of not }
(if (if (consp (cons x (list z))) nil t) 0 (+ 1 (alen (list z))))

= { consp axioms }
(if (if t nil t) 0 (+ 1 (alen (list z))))

= { if axioms }
(if nil 0 (+ 1 (alen (list z))))

= { if axioms }
(+ 1 (alen (list z)))

What we have shown so far is:

(alen (cons x (list z))) = (+ 1 (alen (list z))) (4.1)

which we will feel free to write as

(alen (cons x (list z))) = 1 + (alen (list z)) (4.2)

because it should be clear how to go from (4.1) to (4.2) and because we have been trained
to use infix for arithmetic operators since elementary school.

You should be able to continue the proof to show that

(alen (cons x (list z))) = 2 (4.3)

Finish the proof.
Once the proof is done, we have shown that (4.3) is valid. Any validity that we establish

via proof is called a theorem, so (4.3) is a theorem. To reason about built-in functions such as
consp, if, and equal we use axioms, which you can think of as built-in theorems providing
the semantics of the built-in functions. Every time we define a function that ACL2s admits,
we also get a definitional axiom, which, for now, you can think of as an axiom stating that
the function is equal to its body (but more on this soon). We can then reason from these
basic axioms (which are also theorems) using what is called first order logic. First order logic
includes propositional reasoning, but extends it significantly. We will introduce as much of
first order reasoning as needed.

Back to our proof. We are not done with the proof of Conjecture 4, but there are at
least two reasonable ways to proceed.

First, we might say:
If we simplify the RHS (Right Hand Side), we get
(alen (cons y (list z)))



54 Reasoning About Programs

= { Definition of len, instantiation }
. . .

= { if axioms }
(+ 1 (alen (list z)))

= { Definition of len, instantiation }
. . .

= { Arithmetic }
2

So, the LHS (Left Hand Side) and RHS are equal.
What we realized is that the same steps that we used to simplify the LHS can be used

in a symmetric way to simplify the RHS. In this class we will avoid proofs involving “. . .”.
Here’s a better way to make the argument:

First, note that (4.3) is a theorem. By instantiating (4.3) with the substitution ((x y)),
we get:

(alen (cons y (list z))) = 2 (4.4)

Putting (4.3) and (4.4) together, we have

(alen (cons x (list z))) = (alen (cons y (list z)))

So, Conjecture 4 is a theorem.
We already saw that instantiation can be used in propositional logic. Its use is indis-

pensable when reasoning about ACL2s programs!
This example highlights the new tool we have that allows us to reason about programs:

proof. The game we will be playing is to construct proofs of conjectures involving some
of the basic functions we have already defined (e.g., len, app, and rev). We will focus on
these simple functions because their simplicity allows us to focus exclusively on how to prove
theorems without the added complexity of having to understand what conjectures mean.

Once we prove that a conjecture is valid, we say that the conjecture is a theorem. We are
then free to use that theorem in proving other theorems. This is similar to what happens
when we program: we define functions and then we use them to define other functions (e.g.,
we define rev using app).

What’s new here?
Well, we are beyond the realm of the propositional. We have variables ranging over the

ACL2s universe, equality, and functions.
Let’s look at equality. To simplify notation, we tend to write expressions involving equal

using = instead. This is similar to what we did with arithmetic. For example, instead of
writing the more technically correct

(equal (alen (cons x z)) (alen (cons y z)))

we usually write the more familiar

(alen (cons x z)) = (alen (cons y z))

We feel free to go back and forth without justification.
If we want to be pedantic, here is how equal and = are related.



Equational Reasoning 55

� x = y ⇒ (equal x y) = t

� x 6= y ⇒ (equal x y) = nil

When we use = or 6= in expressions, they bind more tightly than any of the propositional
operators.

How can we reason about equality? We will use just two properties of equality. First,
equality is what is called an equivalence relation, i.e., it satisfies the following properties.

� Reflexivity : x = x

� Symmetry : x = y ⇒ y = x

� Transitivity : x = y ∧ y = z ⇒ x = z

That = is an equivalence relation is what allows us to chain together the sequence of
equalities in the proof of Conjecture 4 above to conclude that (alen (cons x (list z)))

= 2.
The second property of equality we will use is the Equality Axiom Schema for Functions :

For every function symbol f of arity n we have the axiom

(x1 = y1 ∧ · · · ∧ xn = yn) ⇒ (f x1 · · ·xn) = (f y1 · · · yn)
To reason about constants, we can use evaluation, e.g., all of the following are theorems.

t 6= nil

() = nil

1 6= 2

2/4 = 4/8

(cons 1 ()) = (list 1)

To reason about built-in functions, such as cons, first, and rest, we have axioms for
each of these functions that are derived from their semantics.

(first (cons x y)) = x

(rest (cons x y)) = y

(consp (cons x y)) = t

x = nil ⇒ (if x y z) = z

x 6= nil ⇒ (if x y z) = y

What about instantiation? It is a rule of inference:
Instantiation: Derive ϕ|σ from ϕ. That is, if ϕ is a theorem and σ is a substitution, then
by instantiation, ϕ|σ is a theorem.

For example, since this is a theorem (equal (first (cons x y)) x) we can derive
(equal (first (cons (foo x) (bar z))) (foo x)).

More carefully, a substitution is just a list of the form:

((var1 term1) . . . (varn termn))



56 Reasoning About Programs

where the var i are target variables and the termi are their images. We require that the var i
are distinct. The application of this substitution to a formula uniformly replaces every free
occurrence of a target variable by its image.

What does it mean to say that the following is a theorem?

(alen (cons x (list z))) = (alen (cons y (list z)))

That no matter what you replace x, y, and z with from the ACL2s universe, the LHS and
RHS evaluate to the same thing.

Let’s try to prove another conjecture.

Conjecture 5 (app (cons x y) z) = (cons x (app y z))

(app (cons x y) z)

= { Definition of app, instantiation }
(if (endp (cons x y)) z (cons (first (cons x y)) (app (rest (cons x y)) z)))

= { Definition of endp, axioms for consp }
(if nil z (cons (first (cons x y)) (app (rest (cons x y)) z)))

= { Axioms for if }
(cons (first (cons x y)) (app (rest (cons x y)) z))

= { Axioms for first, rest }
(cons x (app y z))

Unfortunately, the above “proof” has a problem. Unlike alen, which is defined for the
whole ACL2s universe, app is only defined for lists.

Recall the definitions:

(defunc listp (l)

:input-contract t

:output-contract (booleanp (listp l))

(if (consp l)

(listp (rest l))

(equal l ())))

(defunc endp (l)

:input-contract (listp l)

:output-contract (booleanp (endp l))

(not (consp l)))

(defunc app (a b)

:input-contract (and (listp a) (listp b))

:output-contract (listp (app a b))

(if (endp a)

b

(cons (first a) (app (rest a) b))))

The definition of functions such as app give rise to definitional axioms. Here is the
definitional axiom that app gives rise to:

(listp a) ∧ (listp b)



Equational Reasoning 57

⇒
(app a b)

=

(if (endp a)

b

(cons (first a) (app (rest a) b)))

In general, every time we successfully admit a function, we get two axioms of the form

ic ⇒ (f x1...xn) = body

ic ⇒ oc

where ic is the input contract for f, and where oc is the output contract for f. We will
be very precise about what “successfully admit” means, but, for now, take this to mean
that ACL2s accepts your function definition. Recall that this involves proving termination,
proving the function contracts, and proving the body contracts.

So, we can’t expand the definition of app in the proof of Conjecture 5, unless we know:

(listp (cons x y)) ∧ (listp z)

which is equivalent to:

(listp y) ∧ (listp z)

So, what we really proved was:

Theorem 4.1 (listp y) ∧ (listp z) ⇒ (app (cons x y) z) = (cons x (app y z))

When we write out proofs, we will not explicitly mention input contracts when using a
function definition because the understanding is that every time we use a definitional axiom
to expand a function, we have to check that we satisfy the input contract, so we don’t need
to remind the reader of our proof that we did something we all understand always needs
doing.

It is often the case that when we think about conjectures that we expect to be valid,
we often forget to carefully specify the hypotheses under which they are valid. These
hypotheses depend on the input contracts of the functions mentioned in the conjectures,
so get into the habit of looking at conjectures and making sure that they have the needed
hypotheses. Contract checking is the process of checking that a conjecture has all the
hypotheses required by the contracts of the functions appearing in the conjecture. Contract
completion is the process of adding the missing hypotheses (if any) identified during contract
checking. Contract checking and completion is similar to what you do when you write
functions: you check the body contracts of the functions you define and if you are calling
the functions on arguments of the wrong type, then you modify your code appropriately.
In the case of function definitions, as we have seen, it is often the case that if the function
definition is wrong, there is also a contract violation. Similarly, if a conjecture is not valid,
it is often the case that there is a contract violation.

Let’s look at another example:

Conjecture 6 (endp x) ⇒ (app (app x y) z) = (app x (app y z))



58 Reasoning About Programs

Can I prove this? Check the contracts of the conjecture.
Contract checking and completion gives rise to:

Conjecture 7 (listp x) ∧ (listp y) ∧ (listp z) ∧ (endp x) ⇒ (app (app x y)

z) = (app x (app y z))

By the way, notice all of the hypotheses. Notice the Boolean structure. This is why we
studied Boolean logic first! Almost everything we will prove will include an implication.

Notice that in ACL2s, we would technically write:

(implies (and (listp x)

(listp y)

(listp z)

(endp x))

(equal (app (app x y) z)

(app x (app y z))))

The first thing to do when proving theorems is to take the Boolean structure into account
by writing the conjecture in the form:

hyp1 ∧ hyp2 ∧ · · · ∧ hypn ⇒ conc

where we have as many hyps as possible. We will call the set of top-level hypotheses (i.e.,
{hyp1, hyp2, . . . , hypn}) our context.

Our context for Conjecture 7 is:

C1. (listp x)

C2. (listp y)

C3. (listp z)

C4. (endp x)

We then look at our context and see what obvious things our context implies. The
obvious thing here is that C1 and C4 imply that x must be nil, so we add to our context
the following:

C5. x = nil { C1, C4 }

Notice that any new facts we add must come with a justification. We will use the
convention that all elements of our context will be given a label of the form Ci, where i is
a positive integer.

The next thing we do is to start with the LHS of the conclusion and to try and reduce it
to the RHS, using our proof format. If we need to refer to the context in one of proof step
justifications, say Context 5, we write C5.

(app (app x y) z)

= { Def of app, C5, Def of endp, if axioms }
(app y z)

= { Def of app, C5, Def of endp, if axioms }
(app x (app y z))

Notice that we took bigger steps than before. Before we might have written:



Equational Reasoning 59

(app (app x y) z)

= { Def of app }
(app (if (endp x) y (cons (first x) (app (rest x) y))) z)

= { C5 }
(app (if (endp nil) y (cons (first nil) (app (rest nil) y))) z)

= { Def of endp }
(app (if t y (cons (first nil) (app (rest nil) y))) z)

= { If axioms }
(app y z)

. . .

So, the above four steps were compressed into one step. Why? Because many of the
steps we take involve expanding the definition of a function. Function definitions tend to
have a top-level if or cond and as a general rule we will not expand the definition of such
a function unless we can determine which case of the top-level if-structure will be true. If
we just blindly expand function definitions, we’ll wind up with a sequence of increasingly
complicated terms that don’t get us anywhere. So, if we know which case of the top-level
if is true, then why go to the trouble of writing out the whole body of the function? Why
not just write out that one case? Well, that’s why we allow ourselves to expand definitions
as in the first proof of Conjecture 7.

One other comment about the first proof of Conjecture 7. Students often have no
difficulty with the first step, but have difficulty with the second step. The second step
requires one to see that the simple term:

(app y z)

can be transformed into the RHS

(app x (app y z))

This may seem like a strange thing to do because students are used to thinking about
computation as unfolding over time. So, if x is nil then of course the following holds.

(app (app x y) z)

= { Def of app, . . . }
(app y z)

Because when we compute (app x y) we get y.
What students initially have difficulty with is seeing that you can reverse the flow of

time and everything still works. For example the following is true,
(app y z)

= { Def of app, . . . }
(app (app x y) z)

Because starting with (app y z) we can run time in reverse to get (app x (app y z))

(recall x is nil). In fact, this is “obvious” from the equality (=) axioms that tell us that
equality is an equivalence relation (reflexive, symmetric, and transitive). The symmetry



60 Reasoning About Programs

axiom tells us that we can view computation as moving forward in time or backward. It
just doesn’t make a difference.

As an aside, it turns out that in physics, we can’t reverse time and so this symmetry
we have with computation is not a symmetry we have in our universe. One reason why
we can’t reverse time in physics is that the second law of thermodynamics precludes it.
The second law of thermodynamics implies that entropy increases over time. There is
an even more fundamental reason why time is not reversible. This second reason has to
do with the fundamental laws of physics at the quantum level, whereas the second law of
thermodynamics is thought to be a result of the initial conditions of our universe. The second
reason is that in our current understanding of the universe, there are very small violations of
time reversibility exhibited by subatomic particles. The extent of the violations is not fully
understood and probably has something to do with the imbalance of matter and antimatter
in the visible universe. There is almost no antimatter in the visible universe and one of the
big open problems in physics is trying to understand why that is the case.

4.1 Testing Conjectures

Recall that since Conjecture 7 is a theorem, whatever we replace the free variables with, the
conjecture will evaluate to t. A convenient way of checking the conjecture using ACL2s is
to use let, as follows:

(let ((x nil)

(y nil)

(z nil))

(implies (and (endp x)

(listp x)

(listp y)

(listp z))

(equal (app (app x y) z)

(app x (app y z)))))

An even more convenient method is to use ACL2s to test the conjecture. Here is how:

(test?

(implies (and (endp x)

(listp x)

(listp y)

(listp z))

(equal (app (app x y) z)

(app x (app y z)))))

There are three possible outcomes.

1. ACL2s proves that the conjecture is a theorem.

2. ACL2s finds a counterexample, i.e., the conjecture is falsifiable.

3. None of the above hold, i.e., the conjecture satisfies all of the tests ACL2s tries.



Equational Reasoning 61

Consider another example. Consider the claim that app2, below, is equivalent to app.

(defunc app2 (x y)

:input-contract (and (listp x) (listp y))

:output-contract (listp (app2 x y))

(if (endp y)

x

(cons (first y) (app2 x (rest y)))))

The claim is false, but app2 works fine on many tests, e.g.,

(check= (app2 ’(1 2) ’(1 2)) ’(1 2 1 2))

(check= (app2 nil nil) nil)

(check= (app2 nil ’(1 2 3)) ’(1 2 3))

(check= (app2 ’(1 2 3) nil) ’(1 2 3))

Here is how we can use ACL2s to test the conjecture that app2 is equivalent to our
definition.

(test?

(implies (and (listp x) (listp y))

(equal (app2 x y)

(app x y))))

ACL2s gives us counterexamples. It also shows us cases in which the conjecture is true.
Now, suppose that the specification for app2 only stated that (app2 x y) must return

a list that contains all of the elements in x and all of the elements in y, where order doesn’t
matter, but repetitions do. The definition of app2 above satisfies the specification. In
addition, there are different functions that satisfy the specification. How can we write tests
that are independent of the implementation? We cannot write simple check=’s because
there are exponentially many correct answers that app2 could return. We can’t test that
app2 is equal to our solution for the same reason. But, we can write conjectures that capture
the specification and ACL2s can be used to test these conjectures.

Here is one way of doing this. We test that every element in (app2 x y) is also an
element of (app x y) and conversely.

; check that if a is in app2, it is in app

(test?

(implies (and (listp x)

(listp y)

(in a (app2 x y)))

(in a (app x y))))

; check that if a is in app, it is in app2

(test?

(implies (and (listp x)

(listp y)

(in a (app x y)))

(in a (app2 x y))))



62 Reasoning About Programs

Exercise 4.1 Unfortunately, we can define app2 in a way that does not satisfy the specifi-
cation, but does satisfy the above test?’s. Exhibit such a definition and check that it passes
the above tests. A better solution is to test that app2 is a permutation of app. Define a
function that checks if its arguments are permutations of one another and use this to test
both your faulty definition of app2 and the definition given above.

You can control how much testing ACL2s does. The default number of tests depends
on the mode, but you can set it to whatever number you want, e.g., here is how to instruct
ACL2s to run 1,000 tests.

(acl2s-defaults :set num-trials 1000)

To summarize, ACL2s provides test?, a powerful facility for automatically testing pro-
grams. Instead of having to manually write tests, ACL2s generates as many tests as re-
quested automatically. The other major advantage is that we do not have to specify exactly
what functions have to do. In the app2 example above, we did not have to say what app2
returns; instead, we specified the properties we expect app2 to satisfy. The advantage is
that we decouple the testing of app2 from the development of app2. In fact, even if we
change the implementation of app2, the tests can remain the same.

4.2 Equational Reasoning with Complex Propositional Structure

Many of the conjectures we will examine have rich propositional structure. We now examine
how to reason about such conjectures.

Conjecture 8

(consp x)

⇒
[[(listp (rest x)) ∧ (listp y) ∧ (listp z)

⇒
(app (app (rest x) y) z) = (app (rest x) (app y z))]

⇒
[(listp x) ∧ (listp y) ∧ (listp z)

⇒
(app (app x y) z) = (app x (app y z))]]

The above conjecture has the form

A ⇒ [B ⇒ C]

where

A is (consp x)

B is [(listp (rest x)) ∧ (listp y) ∧ (listp z)

⇒ (app (app (rest x) y) z) = (app (rest x) (app y z))]

C is [(listp x) ∧ (listp y) ∧ (listp z)

⇒ (app (app x y) z) = (app x (app y z))]



Equational Reasoning 63

What we are doing here is identifying some of the propositional structure of Conjecture 8.
Here’s why. It turns out that

A ⇒ [B ⇒ C] ≡ [A ∧B] ⇒ C (4.5)

This propositional equality is one we will use over and over. We will use it to rewrite
Conjecture 8 so that the context has as many conjunctions as possible. After applying (4.5)
to Conjecture 8, we get:

[(consp x) ∧
[(listp (rest x)) ∧ (listp y) ∧ (listp z)

⇒
(app (app (rest x) y) z) = (app (rest x) (app y z))]

⇒
[(listp x) ∧ (listp y) ∧ (listp z)

⇒
(app (app x y) z) = (app x (app y z))]]

Applying (4.5) again and rearranging conjuncts gives us:

Conjecture 9

[(consp x) ∧
(listp x) ∧
(listp y) ∧
(listp z) ∧
[(listp (rest x)) ∧ (listp y) ∧ (listp z)

⇒
(app (app (rest x) y) z) = (app (rest x) (app y z))]]

⇒
(app (app x y) z) = (app x (app y z))]]

Now, we can extract the context. Doing so gives us:

C1. (consp x)

C2. (listp x)

C3. (listp y)

C4. (listp z)

C5. [(listp (rest x)) ∧ (listp y) ∧ (listp z)] ⇒
[(app (app (rest x) y) z) = (app (rest x) (app y z))]

Notice that we cannot use (4.5) on C5 to add the hypotheses of C5 to our context. Why?
We will be confronted with implications in our context (like C5) over and over. Usually

what we will need is the consequent of the implication, but we can only use the consequent
if we can also establish the antecedent, so we will try to do that. Here’s how:

C6. (listp (rest x)) { C1, C2, Def listp }



64 Reasoning About Programs

C7. (app (app (rest x) y) z) = (app (rest x) (app y z)) {C6, C3, C4, C5,MP}

So, notice what we did. First we added C6 to our context. How did we get C6? Well,
we know (listp x) (C2) and (consp x) (C1) so if we use the definitional axiom of listp,
we get C6: (listp (rest x)).

Now, we have extended our context to include the antecedent of C5, so by propositional
logic (Modus Ponens, abbreviated MP), we get that the conclusion also holds, i.e., C7.

Recall that Modus Ponens tells us that if the following two formulas hold

A ⇒ B

A

Then so does the formula

B

We are now ready to prove the theorem. We start with the LHS of the equality in the
conclusion of Conjecture 9.

(app (app x y) z)

= { Def of app, C1, C2, C3 }
(app (cons (first x) (app (rest x) y)) z)

= { Theorem 4.1 }
(cons (first x) (app (app (rest x) y) z))

= { C7 }
(cons (first x) (app (rest x) (app y z)))

= { Def of app, C1, C2, C3, C4 }
(app x (app y z))

4.3 The difference between theorems and context

It is very important to understand the difference between a formula that is a theorem and
one that appears in a context. A formula that appears in a context cannot be instantiated. It
can only be used as is, in the proof attempt for the conjecture from which it was extracted.
This is a major difference. Our contexts will never include theorems we already know.
Theorems we already know are independent of any conjecture we are trying to prove and
therefore do not belong in a context. A context is always formula specific.

Here is an example that shows why instantiation of context formulas leads to unsound-
ness. Here is a “proof” of

x = 1 ⇒ 0 = 1 (4.6)

Context:

C1. x = 1



Equational Reasoning 65

Proof 0

= { Instantiate C1 with ((x 0)) }
1

So, now we have a “proof” of (4.6), but using (4.6) we can get:

nil (4.7)

How?
Instantiate (4.6) with ((x 1)), use Propositional logic, and Arithmetic.
Now we have a proof for any conjecture we want, e.g.,

ϕ (4.8)

How?
Well, nil (false) implies anything, so this is a theorem

nil ⇒ ϕ

Now, ϕ follows using (4.7) and Modus Ponens.
The point is that a context is completely different from a theorem. The context of (4.6)

does not tell us that for all x, x = 1. It just tells us that x = 1 in the context of con-
jecture (4.6). Contexts are just a mechanism for extracting propositional structure from a
conjecture, which in turn allows us to focus on the important part of a proof and to minimize
the writing we have to do.

4.4 How to prove theorems

When presented with a conjecture, make sure that you check contracts, as shown above.
If the contracts checking succeeds, make sure you understand what the conjecture is

saying.
Once you do, see if you can find a counterexample.
If you can’t find a counterexample, try to prove that the conjecture is a theorem.
One often iterates over the last two steps.
During the proof process, you have available to you all the theorems we have proved so

far. This includes all of the axioms (first-rest axioms, if axioms, . . .), all the definitional
axioms (def of app, len, ...), all the contract theorems (contracts of app, len, ...). These
theorems can be used at any time in any proof and can be instantiated using any substitution.
They are a great weapon that will help you prove theorems, so make sure you understand
the set of already proven theorems.

There are also local facts extracted from the conjecture under consideration. Recall that
the first step is to try and rewrite the conjecture into the form:

[C1 ∧ C2 ∧ . . . ∧ Cn] ⇒ RHS

where we try to make RHS as simple as possible. C1, . . . , Cn are going to be the first
n components of our context. Formulas in the context are specific to the conjecture under
consideration. They are completely different from theorems (as per the above discussion).



66 Reasoning About Programs

A good amount of manipulation of the conjecture may be required to extract the maximal
context, but it is well worth it.

The next step is to see what other facts the C1, . . . , Cn imply. For example, if the current
context is:

Context:

C1. (endp x)

C2. (listp x)

then we would add

C3. x = nil { C1, C2 }

This will happen a lot. Another case that will happen a lot is:

C1. (consp x)

C2. (listp x)

C3. (listp (rest x)) ⇒ ϕ

then we would add

C4. (listp (rest x)) { C1, C2, Def listp }

C5. ϕ { C4, C3, MP }

where MP is modus Ponens.
As was the case when we studied propositional logic, we have “word problems,” some-

thing we now consider:

Conjecture 10 x ≤ xy if y ≥ 1

Discussion: What does the above conjecture mean, anyway?
It means that for any values of x, and y, if y ≥ 1 then x ≤ xy.
Really? Any values? What if x and y are functions or strings or . . .? Usually the domain

is implicit, i.e., “clear from context.”
We will be using ACL2s, and we can’t appeal to “context.” This is a good thing!
Notice also that we can use ACL2s, a programming language, to make mathematical

statements. Of course! Programming languages are mathematical objects and you reason
about programs the way you reason about the natural numbers, the reals, sets, etc.: you
prove theorems.

In ACL2s, we have to be precise about the conditions under which we expect the con-
jecture to hold. The conjecture can be formalized in ACL2s as follows:

(thm

(implies (and (rationalp x)

(rationalp y)

(>= y 1))

(<= x (* x y))))

In standard mathematical notation it is:



Equational Reasoning 67

〈∀x, y ∈ Q :: y ≥ 1 ⇒ x ≤ xy〉
Is the above conjecture true?
Well, when given a conjecture, we can try one of two things:

1. Try to falsify it.

2. Try to prove it is correct.

How do we falsify a conjecture?
Simple exhibit a counterexample.
Remember that in the design recipe, we construct examples and tests. You should do the

same thing with conjectures. That is, we can test that the conjecture is true on examples.
Here are some:

1. x = 0, y = 0

2. x = 12, y = 1/3

3. x = 9, y = 3/2

Any others?
How do we test this in ACL2s? Put the conjecture in the body of a let.

(let ((x 0)

(y 0))

(implies (and (rationalp x)

(rationalp y)

(>= y 1))

(<= x (* x y))))

We are using a programming language, so we can do better. We can write a program
to test the conjecture on a large number of cases. How many cases are there? We can use
a random number generator to “randomly” sample from the domain. We’ll see how to do
that in ACL2s.

(test?

(implies (and (rationalp x)

(rationalp y)

(>= y 1))

(<= x (* x y))))

If all of the tests pass, then we can try to prove that the conjecture is a theorem.
What would a “proof” of the above conjecture look like?
Most proofs are informal and it takes a long time for students to understand what

constitutes an informal proof. This happens by osmosis over time.
In our case, we have a simple rule: it’s a proof if ACL2s says it is.

(thm

(implies (and (rationalp x)

(rationalp y)

(>= y 1))



68 Reasoning About Programs

(<= x (* x y))))

Of course, this isn’t a theorem.
Let’s consider another example:

Conjecture 11 x(y+z) = xy + xz

How do we write this in ACL2s?

(thm (implies (and (rationalp x)

(rationalp y)

(rationalp z))

(equal (* x (+ y z))

(+ (* x y) (* x z)))))

Is the above conjecture true?
Well, we can try to falsify it.

(let ((x 0)

(y 0)

(z 0))

(equal (* x (+ y z))

(+ (* x y) (* x z))))

We can try many examples. We can automatically generate random examples.

(test?

(implies (and (rationalp x)

(rationalp y)

(rationalp z))

(equal (* x (+ y z))

(+ (* x y) (* x z)))))

When do we give up falsifying this?
Can we just try all the possibilities? If we had infinite time. Do we? Maybe (ask a

physicist), but, as a practical matter, we currently don’t.
Maybe we should consider a proof. Can we prove the above?
One answer might be: “of course, multiplication distributes over addition.”
In ACL2s, the conjecture turns out to be true

(thm (implies (and (rationalp x)

(rationalp y)

(rationalp z))

(equal (* x (+ y z))

(+ (* x y) (* x z)))))

This is pretty amazing because a proof gives us a finite way of running an infinite number
of examples. That’s the power of logic and mathematics.

When ACL2s proves this theorem, is it thinking?

The question of whether Machines Can Think ... is about as relevant as the
question of whether Submarines Can Swim.

Edsger W. Dijkstra: EWD898, 1984



Equational Reasoning 69

See the EWD archives at the University of Texas at Austin.
Here is another example

(defunc app (a b)

:input-contract (and (listp a) (listp b))

:output-contract (listp (app a b))

(if (endp a)

b

(cons (first a) (app (rest a) b))))

(defunc rev (x)

:input-contract (listp x)

:output-contract (listp (rev x))

(if (endp x)

nil

(app (rev (rest x)) (list (first x)))))

(defunc in (a X)

:input-contract (listp x)

:output-contract (booleanp (in a X))

(if (endp x)

nil

(or (equal a (first X))

(in a (rest X)))))

(defunc del (a X)

:input-contract (listp x)

:output-contract (listp (del a X))

(cond ((endp x) nil)

((equal a (first x)) (rest x))

(t (cons (first x) (del a (rest x))))))

Conjecture 12

(listp x)

⇒
(in a x) ⇒ (not (in a (del a x)))

Using induction (something we will describe later), the above conjecture leads to the
following proof obligation:

(and (implies (endp x)

(implies (listp x)

(implies (in a x)

(not (in a (del a x))))))

(implies (and (consp x)

(equal a (first x)))

(implies (listp x)

(implies (in a x)



70 Reasoning About Programs

(not (in a (del a x))))))

(implies (and (consp x)

(not (equal a (first x)))

(implies (listp (rest x))

(implies (in a (rest x))

(not (in a (del a (rest x)))))))

(implies (listp x)

(implies (in a x)

(not (in a (del a x)))))))

Is this true? If so, give a proof. Is it false? If so, exhibit a counterexample.
Try this before reading further.
Conjecture 12 is false, e.g., consider

(let ((x ’(1 1))

(a 1))

. . .)

where . . . in the above let is Conjecture 12.
What about the following conjecture?

Conjecture 13

(listp x)

⇒
(in a x) ⇒ (in a (app x y))

Which by induction leads to the following proof obligation:

(and (implies (endp x)

(implies (listp x)

(implies (in a x)

(in a (app x y)))))

(implies (and (consp x)

(equal a (first x)))

(implies (listp x)

(implies (in a x)

(in a (app x y)))))

(implies (and (consp x)

(not (equal a (first x)))

(implies (listp (rest x))

(implies (in a (rest x))

(in a (app (rest x) y)))))

(implies (listp x)

(implies (in a x)

(in a (app x y))))))

Is this true? If so, give a proof. Is it false? Is so, exhibit a counterexample.
Try this before reading further.
This is true and you should be able to prove it by breaking Conjecture 13 into three

parts and proving each in turn.



Equational Reasoning 71

In the cases we have seen so far, it was easy to decide if a conjecture was true or false,
and with a good amount of testing, we would have identified the false conjectures.

Is this always the case?
No.
Anyone heard of Fermat’s last theorem?

Conjecture 14 For all positive integers x, y, z, and n, where n > 2, xn + yn 6= zn.

In 1637, Fermat wrote about the above:

“I have a truly marvelous proof of this proposition which this margin is too
narrow to contain.”

This is called Fermat’s Last Theorem. It took 357 years for a correct proof to be found
(by Andrew Wiles in 1995).

We can use Fermat’s last theorem to construct a conjecture that is hard to prove in
ACL2s. After defining expt, a function that computes exponents, we define:

(defunc f (x y z n)

:input-contract (and (posp x)

(posp y)

(posp z)

(natp n)

(> n 2))

:output-contract (booleanp (f x y z n))

(not (equal (+ (expt x n) (expt y n))

(expt z n))))

(thm (f x y z n))

So, proving theorems may be hard.
Notice also that if the output contract was

:output-contract (equal (f x y z n) t)

then ACL2s would have to prove a theorem that eluded mankind for centuries in order
to even admit f!

But, it is easy to find a counterexample to a conjecture that is not a theorem, right?
That is not true either. There are many examples of conjectures that took a long time

to resolve, and which turned out to be false.

4.5 Arithmetic

We can also reason about arithmetic functions. For example, consider the following conjec-
ture

n∑

i=0

i =
n(n+ 1)

2

That is, summing up 0, 1, . . . , n gives n(n+1)
2 .



72 Reasoning About Programs

We can prove this using mathematical induction.
Here is how we do it in ACL2s. First, we have to define Σ.

(defunc sum (n)

:input-contract (natp n)

:output-contract (natp (sum n))

(if (equal n 0)

0

(+ n (sum (- n 1)))))

We can prove that (sum n) = n(n+1)
2 , which is formalized as:

(implies (natp n)

(equal (sum n)

(/ (* n (+ n 1)) 2)))

by mathematical induction. How?
First, we have the base case.

(equal n 0) ∧ (natp n) ⇒ (sum n) = (/ (* n n+1) 2) (4.9)

Second, we have the induction step.

n > 0 ∧ (natp n) ∧ (sum n-1) = (/ (* n-1 n) 2) ⇒ (sum n) = (/ (* n n+1) 2)

(4.10)
Here is the proof, starting with (4.9).
Context.

C1. (natp n)

C2. (equal n 0)

Proof.
(sum n)

= { Def of sum, C2 }
0

= { Arithmetic, C2 }
(/ (* n n+1) 2)

Here is the proof of (4.10).
Context.

C1. (natp n)

C2. n 6= 0

C3. (natp n-1) ⇒ (sum n-1) = (/ (* n-1 n) 2)

C4. (natp n-1) { C1, C2 }

C5. (sum n-1) = (/ (* n-1 n) 2) { C3, C4, MP }



Equational Reasoning 73

Proof.
(sum n)

= { Def of sum, C2 }
n + (sum (- n 1))

= { C5 }
n + (/ (* n-1 n) 2)

= { Arithmetic }
(2n + n(n-1))/2

= { Arithmetic }
(2n + n2 -n)/2

= { Arithmetic }
(n2 +n)/2

= { Arithmetic }
n(n+1)/2


