
Reasoning About Programs
Panagiotis Manolios

Northeastern University

February 26, 2017
Version: 100

Copyright c©2017 by Panagiotis Manolios

All rights reserved. We hereby grant permission for this publication to be used for personal or
classroom use. No part of this publication may be stored in a retrieval system or transmitted
in any form or by any means other personal or classroom use without the prior written
permission of the author. Please contact the author for details.

1

Introduction

These lecture notes were developed for Logic and Computation, a freshman-level class taught
at the College of Computer and Information Science of Northeastern University. Starting
in Spring 2008, this is a class that all students in the college are required to take.

The goals of the Logic and Computation course are to provide an introduction to formal
logic and its deep connections to computing. Logic is presented from a computational
perspective using the ACL2 Sedan theorem proving system. The goal of the course is
to introduce fundamental, foundational methods for modeling, designing, specifying and
reasoning about computation. The topics covered include propositional logic, recursion,
contracts, testing, induction, equational reasoning, termination analysis, term rewriting, and
various proof techniques. We show how to use logic to formalize the syntax and semantics
of the core ACL2s language, a simple LISP-based language with contracts. We then use
the ACL2s language to formally reason about programs, to model systems at various levels
of abstraction, to design and specify interfaces between systems and to reason about such
composed systems. We also examine decision procedures for fragments of first-order logic
and how such decision procedures can be used to analyze models of systems.

The students taking the Logic and Computation class have already taken a program-
ming class in the previous semester, in Racket. The course starts by reviewing some basic
programming concepts. The review is useful because at the freshman level students benefit
from seeing multiple presentations of key concepts; this helps them to internalize these con-
cepts. For example, in past semesters I have asked students to write very simple programs
(such as a program to append two lists together) during the first week of classes and a
surprisingly large number of students produce incorrect code.

During the programming review, we introduce the ACL2s language. This is the language
we use throughout the semester and it is similar to Racket. The syntax and semantics of the
core ACL2s language are presented in a mathematical way. We provide enough information
so that students can determine what sequence of glyphs form a well-formed expression
and how to formally evaluate well-formed expressions potentially containing user-defined
functions with constants as arguments (this is always in a first-order setting). This is a
pretty big jump in rigor for students and is advanced material for freshmen students, but
they already have great intuitions about evaluation from their previous programming class.
This intuition helps them understand the rigorous presentation of the syntax and semantics,
which in turns helps strengthen their programming abilities.

The lecture notes are sparse. It would be great to add more exercises, but I have not done
that yet. Over the course of many years, we have amassed a large collection of homework
problems, so students see lots of exercises, and working through these exercises is a great
way for them to absorb the material, but the exercises are not in the notes. You can think
of the lecture notes as condensed notes for the course that are appropriate for someone who
knows the material as a study guide. The notes can also be used as a starting point by

2 CHAPTER 1. INTRODUCTION

students, who should mark them up with clarifications as needed when they attend lectures.
I advise students to read the lecture notes before class. This way, during class they can focus
on the lecture instead of taking notes and they are better prepared to ask for clarifications.

When I started teaching the class, I used the ACL2 book, Computer-Aided Reasoning, An
Approach by Kaufmann, Manolios and Moore. However, over the years I became convinced
that using an untyped first-order logic was not the optimal way of introducing logic and
computation to students because they come in with a typed view of the world. That’s not to
say they have seen type theory; they have not. But, they are surprised when a programming
language allows them to subtract a string from a rational number. Therefore, with the help
of my Ph.D. student Harsh Chamarthi, I have focused on adding type-like capabilities to
ACL2s. Most notably, we added a new data definition framework to ACL2s that supports
enumeration, union, product, record, map, (mutually) recursive and custom types, as well
as limited forms of parametric polymorphism. We also introduced the defunc macro, which
allows us to formally specify input and output contracts for functions. These contracts
are very general, e.g., we can specify that / is given two rationals as input, and that the
second rational is not 0, we can specify that zip is given two lists of the same length as
input and returns a list of the same length as output and so on. Contracts are also checked
statically, so ACL2s will not accept a function definition unless it can prove that the function
satisfies its contracts and that for every legal input and every possible computation, it is
not possible during the evaluation of the function being defined to be in a state where some
other function is poised to be evaluated on a value that violates its input contract. I have
found that a significant fraction of erroneous programs written by students have contract
violations in them, and one of the key things I emphasize is that when writing code, one
needs to think carefully about the contracts of the functions used and why the arguments
to every function call satisfy the function’s contract. Contracts are the first step towards
learning how to specify interfaces between systems. With the move to contracts, the ACL2
book became less and less appropriate, which led me to write these notes.

I have distributed these notes to the students in Logic and Computation for several
years and they have found lots of typos and have made many suggestions for improvement.
Thanks and keep the comments coming!

5

Definitions and Termination

5.1 The Definitional Principle

We’ve already seen that when you define a function, say

(defunc f (x)

:input-contract ic

:output-contract oc

body)

then ACL2s adds the definitional axiom

ic ⇒ (f x) = body

and the contract theorem

ic ⇒ oc

We now more carefully examine what happens when you define functions.
First, let’s see why we have to examine anything at all.
In most languages, one is allowed to write functions such as the following:

(defunc f (x)

:input-contract (natp x)

:output-contract (natp (f x))

(+ 1 (f x)))

This is a nonterminating recursive function.
Suppose we add the axiom

(natp x) ⇒ (f x) = (+ 1 (f x)) (5.1)

Then, using the axiom, ACL2s can prove the contract theorem

(natp x) ⇒ (natp (f x)) (5.2)

This is unfortunate because we now get a contradiction, i.e., we can prove nil in ACL2s,
all because we added the definitional axiom for f (5.1).

Here is how to derive a contradiction. First, notice that the following is an obvious
arithmetic fact.

(natp x) ⇒ x 6= x+ 1 (5.3)

ACL2s can prove this directly.

78 Reasoning About Programs

(thm (implies (natp x) (not (equal x (+ 1 x)))))

If we instantiate (5.3), we get

(natp (f x)) ⇒ (f x) 6= (+ 1 (f x)) (5.4)

Together with (5.2), we have

(natp x) ⇒ (f x) 6= (+ 1 (f x)) (5.5)

Putting (5.1) and (5.5) gives us:

(natp x) ⇒ nil (5.6)

But, now instantiating (5.6) with ((x 1)) gives us:
t

= { (5.6) }
(natp 1) ⇒ nil

= { Evaluation }
nil

As we have seen, once we have nil, we can prove anything. Therefore, this nontermi-
nating recursive equation introduced unsoundness. The point of the definitional principle
in ACL2s is to make sure that new function definitions do not render the logic unsound.
For this reason, ACL2s does not allow you to define nonterminating functions.

Almost all the programs you will write are expected to terminate: given some inputs,
they compute and return an answer. Therefore, you might expect any reasonable language to
detect non-terminating functions. However, no widely used language provides this capability,
because checking termination is undecidable: no algorithm can always correctly determine
whether a function definition will terminate on all inputs that satisfy the input contract.

We note that there are cases in which non-termination is desirable. In particular, reactive
systems, which include operating systems and communication protocols, are intentionally
non-terminating. For example, TCP (the Transmission Control Protocol) is used by ap-
plications to communicate on the Internet. TCP provides a communication service that
is expected to always be available, so the protocol should not terminate. Does that mean
that termination is not important for reactive systems? No, because reactive systems tend
to have an outer, non-terminating, loop consisting of terminating actions. Can we reason
about reactive systems in ACL2s? Yes, but how that is done will not be addressed in this
chapter.

Question: does every non-terminating recursive equation introduce unsoundness?
Consider:

(defunc f (x)

:input-contract t

:output-contract t

(f x))

This leads to the definitional axiom:

(f x) = (f x)

Definitions and Termination 79

This cannot possibly lead to unsoundness since it follows from the reflexivity of equality.
Question: can terminating recursive equations introduce unsoundness?
Consider:

(defunc f (x)

:input-contract t

:output-contract t

y)

This leads to the definitional axiom:

(f x) = y (5.7)

Which causes problems, e.g.,
t

= { Instantiation of (5.7) with ((y t) (x 0)) }
(f 0)

= { Instantiation of (5.7) with ((y nil) (x 0)) }
nil

We got into trouble because we allowed a “global” variable. It will turn out that we can
rule out bad terminating equations with some simple checks.

So, modulo some checks we are going to get to soon, terminating recursive equations do
not introduce unsoundness, because we can prove that if a recursive equation can be shown
to terminate then there exists a function satisfying the equation.

The above discussion should convince you that we need a mechanism for making sure
that when users add axioms to ACL2s by defining functions, then the logic stays sound.

That’s what the definitional principle does.
Definitional Principle for ACL2s
The definition

(defunc f (x1 . . . xn)

:input-contract ic

:output-contract oc

body)

is admissible provided:

1. f is a new function symbol, i.e., there are no other axioms about it. Functions are
admitted in the context of a history, a record of all the built-in and defined functions
in a session of ACL2s.

Why do we need this condition? Well, what if we already defined app? Then we
would have two definitions. What about redefining functions? That is not a good
idea because we may already have theorems proven about app. We would then have
to throw them out and any other theorems that depended on the definition of app.
ACL2s allows you to undo, but not redefine.

2. The xi are distinct variable symbols.

Why do we need this condition? If the variables are the same, say (defunc f (x x)

. . .), then what is the value of x when we expand(f 1 2)?

80 Reasoning About Programs

3. body is a term, possibly using f recursively as a function symbol, mentioning no
variables freely other than the xi;

Why? Well, we already saw that global variables can lead to unsoundness. When we
say that body is a term, we mean that it is a legal expression in the current history.

4. The function is terminating. As we saw, nontermination can lead to unsoundness.

There are also two other conditions that I state separately.

5. ic ⇒ oc is a theorem.

6. The body contracts hold under the assumption that ic holds.

If admissible, the logical effect of the definition is to:

1. Add the Definitional Axiom for f: ic ⇒ [(f x1 . . . xn) = body].

2. Add the Contract Theorem for f: ic ⇒ oc.

But, how do we prove termination?
A very simple first idea is to use what are called measure functions. These are functions

from the parameters of the function at hand into the natural numbers, so that we can prove
that on every recursive call the function terminates. Let’s try this with app. What is a
measure function for app?

How about the length of x? So, the measure function is (len x).
Measure Function Definition: m is a measure function for f if all of the following

hold.

1. m is an admissible function defined over the parameters of f;

2. m has the same input contract as f;

3. m has an output contract stating that it always returns a natural number; and

4. on every recursive call, m applied to the arguments to that recursive call decreases,
under the conditions that led to the recursive call.

Here then is a measure function for app:

(defunc m (x y)

:input-contract (and (listp x) (listp y))

:output-contract (natp (m x y))

(len x))

This is a non-recursive function, so it is easy to admit. Notice that we do not use the
second parameter. That is fine and it just means that the second parameter is not needed
for the termination argument.

Next, we have to prove that m decreases on all recursive calls of app, under the conditions
that led to the recursive call. Since there is one recursive call, we have to show:

(implies (and (listp x)

(listp y)

(not (endp x)))

Definitions and Termination 81

(< (m (rest x) y) (m x y)))

which is equivalent to:

(implies (and (listp x)

(listp y)

(not (endp x)))

(< (len (rest x)) (len x)))

which is a true statement.
More examples:

(defunc rev (x)

:input-contract (listp x)

:output-contract (listp (rev x))

(if (endp x)

nil

(app (rev (rest x)) (list (first x)))))

Is this admissible? It depends if we defined app already. Suppose app is defined as above.
What is a measure function?

len.
What about:

(defunc drop-last (x)

:input-contract (listp x)

:output-contract (listp (drop-last x))

(if (equal (len x) 1)

nil

(cons (first x) (drop-last (rest x)))))

No. We cannot prove that it is non-terminating, e.g., when x is nil, what is (rest x)?
The real issue here is that we are analyzing a function that has body contract violations,
e.g., when x is nil, our function tries to evaluate (first x). We can fix that in several
ways. Here is one.

Exercise 5.1 Define drop-last using the design recipe.

(defunc drop-last (x)

:input-contract (listp x)

:output-contract (listp (drop-last x))

(cond ((endp x) nil)

((endp (rest x)) nil)

(t (cons (first x) (drop-last (rest x))))))

Exercise 5.2 What is a measure function for drop-last?

What about the following function?

(defunc prefixes (l)

:input-contract (listp l)

:output-contract (listp (prefixes l))

(cond ((endp l) ’(()))

82 Reasoning About Programs

(t (cons l (prefixes (drop-last l))))))

Is prefixes admissible?
Yes. It satisfies the conditions of the definitional principle; in particular, it terminates

because we are removing the last element from l.

Exercise 5.3 What is a measure function for prefixes?

Does the following satisfy the definitional principle?

(defunc f (x)

:input-contract (integerp x)

:output-contract (integerp (f x))

(if (equal x 0)

0

(+ 1 (f (- x 1)))))

No. It does not terminate.
What went wrong?
Maybe we got the input contract wrong. Maybe we really wanted natural numbers.

(defunc f (x)

:input-contract (natp x)

:output-contract (integerp (f x))

(if (equal x 0)

0

(+ 1 (f (- x 1)))))

Another way of thinking about this is: What is the largest type that is a subtype of
integer for which f terminates? Or, we could ask: What is the largest type for which f

terminates?
But, maybe we got the input contract right. Then we used the wrong design recipe:

(defunc f (x)

:input-contract (integerp x)

:output-contract (integerp (f x))

(cond ((equal x 0) 0)

((> x 0) (+ 1 (f (- x 1))))

(t (+ 1 (f (+ x 1))))))

Now f computes the absolute value of x (in a very slow way).
The other thing that should jump out at you is that the output contract could be (natp

(f x)) for all versions of f above.

5.2 Admissibility of common recursion schemes

We examine several common recursion schemes and show that they lead to admissible func-
tion definitions.

The first recursion scheme involves recurring down a list.

(defunc f (x1 . . . xn)

:input-contract (and . . . (listp xi) . . .)

Definitions and Termination 83

:output-contract . . .
(if (endp xi)

. . .
(. . . (f . . . (rest xi) . . .) . . .)))

The above function has n parameters, where the ith parameter, xi is a list. The function
recurs down the list xi. The . . .’s in the body indicate non-recursive, well-formed code, and
(rest xi) appears in the ith position.

We can use (len xi) as the measure for any function conforming to the above scheme:

(defunc m (x1 . . . xn)

:input-contract (and . . . (listp xi) . . .)
:output-contract (natp (m x1 . . . xn))

(len xi))

That m is a measure function is obvious. The non-trivial part is showing that

(listp xi) ∧ (not (endp xi)) ⇒ (len (rest xi)) < (len xi)

which is easy to see.
So, this scheme is terminating. This is why all of the code you wrote in your beginning

programming class that was based on lists terminates.
We can generalize the above scheme, e.g., consider:

(defunc f (x1 x2)

:input-contract (and (listp x1) (listp x2))

:output-contract (listp (f x1 x2))

(cond ((endp x1) x2)

((endp x2) x1)

(t (list (f (rest x1) (rest x2))

(f (rest x1) (f (rest x1) (cons x2 x2)))))))

We now have three recursive calls and two base cases. Nevertheless, the function termi-
nates for the same reason: len decreases.

(defunc m (x1 x2)

:input-contract (and (listp x1) (listp x2))

:output-contract (natp (m x1 x2))

(len x1))

All three recursive calls lead to the same proof obligation:

(listp x1) ∧ (not (endp x1)) ∧ (not (endp x2)) ⇒ (len (rest x1)) < (len x1)

Thinking in terms of recursion schemes and templates is good for beginners, but what
really matters is termination. That is why recursive definitions make sense.

Let’s look at one more interesting recursion scheme.

(defunc f (x1 . . . xn)

:input-contract (and . . . (natp xi) . . .)
:output-contract . . .
(if (equal xi 0)

. . .
(. . . (f . . . (- xi 1) . . .) . . .)))

84 Reasoning About Programs

The above is a function of n parameters, where the ith parameter, xi is a natural number.
The function recurs on the number xi. The . . .’s in the body indicate non-recursive, well-
formed code, and (- xi 1) appears in the ith position.

We can use xi as the measure for any function conforming to the above scheme:

(defunc m (x1 . . . xn)

:input-contract (and . . . (natp xi) . . .)
:output-contract (natp (m x1 . . . xn))

xi)

That m is a measure function is obvious. The non-trivial part is showing that

(natp xi) ∧ (not (equal xi 0)) ⇒ (- xi 1) < xi

which is easy to see.
So, this scheme is terminating. This is why all of the code you wrote in your beginning

programming class that was based on natural numbers terminates.

Exercise 5.4 We can similarly construct a recursion scheme for integers. Do it.

5.3 Exercises

For each function below, you have to check if its definition is admissible, i.e., it satisfies the
definitional principle.

If the function does satisfy the definitional principle then:

1. Provide a measure that can be used to show termination.

2. Explain in English why the contract theorem holds.

3. Explain in English why the body contracts hold.

If the function does not satisfy the definitional principle then identify each of the 6
conditions above that are violated. Also, if the function is terminating, provide a measure
function.

Exercise 5.5

(defunc f (x y)

:input-contract (and (true-listp x) (natp y))

:output-contract (true-listp (f x y))

(cond ((equal y 0) nil)

((endp x) (list y))

(t (f (cons y x) (- y 1)))))

Exercise 5.6 Dead code example

(defunc f (x y)

:input-contract (and (natp x) (natp y))

:output-contract (integerp (f x y))

(cond ((equal x 0) 1)

((< x 0) (f -1 -1))

(t (+ 1 (f (- x 1) y)))))

Definitions and Termination 85

Notice that the second case of the cond above will never happen.
Below are some generative recursion examples.

Exercise 5.7

(defunc f (x y)

:input-contract (and (integerp x) (natp y))

:output-contract (integerp (f x y))

(cond ((equal x 0) 1)

((< x 0) (f (+ 1 y) (* x x)))

(t (+ 1 (f (- x 1) y)))))

Exercise 5.8

(defunc f (x y)

:input-contract (and (true-listp x) (integerp y))

:output-contract (natp (f x y))

(cond ((endp x) y)

(t (f (rest x) (+ 1 y)))))

Exercise 5.9

(defunc f (x y)

:input-contract (and (true-listp x) (integerp y))

:output-contract (natp (f x y))

(cond ((and (endp x) (equal y 0))

0)

((and (endp x) (< y 0))

(+ 1 (f x (+ 1 y))))

((endp x)

(+ 1 (f x (- y 1))))

(t

(+ 1 (f (rest x) y)))))

Exercise 5.10

(defunc f (x)

:input-contract (rationalp x)

:output-contract (rationalp (f x))

(if (< x 0)

(f (+ x 1/2))

x))

Exercise 5.11

(defunc f (x)

:input-contract (rationalp x)

:output-contract (natp (f x))

(cond ((> x 0) (f (- x 3/2)))

((< x 0) (f (* x -1)))

(t x)))

86 Reasoning About Programs

Exercise 5.12

(defunc f (x)

:input-contract (rationalp x)

:output-contract (natp (f x))

(cond ((> x 0) (f (- x 3/2)))

((< x 0) (f 180))

(t x)))

Exercise 5.13

(defunc f (x y)

:input-contract (and (listp x) (rationalp y))

:output-contract (natp (f x y))

(cond ((> y 0) (f x (- y 1)))

((consp x) (f (rest x) (+ y 1)))

((< y 0) (f (list y) (* y -1)))

(t y)))

Exercise 5.14

(defunc f (x y)

:input-contract (and (listp x) (rationalp y))

:output-contract (natp (f x y))

(cond ((> y 0) (f x (- y 1)))

((consp x) (f (rest x) (+ y 1)))

((< y 0) (f (list y) (* y -1)))

(t y)))

Exercise 5.15 This is hard.

(defunc m (x)

:input-contract (integerp x)

:output-contract (natp (m x))

(if (< 100 x)

(- x 10)

(m (m (+ x 11)))))

5.4 Final Comments

As we already mentioned, checking for termination is undecidable; Turing showed that. So,
you can define functions that terminate, but that ACL2s can’t prove terminating automat-
ically. However, we expect that for the programs we ask you to write, ACL2s will be able
to prove termination automatically. If not, send email and we will help you.

Exercise 5.16 How would you write a program that checks if other programs terminate?

By the way, remember “big-Oh” notation? It is connected to termination. How?
Well if the running time for a function is O(n2), say, then that means that:

Definitions and Termination 87

1. the function terminates; and

2. there is a constant c s.t. the function terminates within c · n2 steps, where n is the
“size” of the input

The big-Oh analysis is just a refinement of termination, where we are not interested in
only whether a function terminates, but also we want an upper bound on how long it will
take.

