Reasoning About Programs
Panagiotis Manolios

Northeastern University

April 9, 2019
Version: 107

Copyright (©2019 by Panagiotis Manolios

All rights reserved. We hereby grant permission for this publication to be used for personal or
classroom use. No part of this publication may be stored in a retrieval system or transmitted
in any form or by any means other personal or classroom use without the prior written
permission of the author. Please contact the author for details.

Introduction

These lecture notes were developed for Logic and Computation, a freshman-level class taught
at the College of Computer and Information Science of Northeastern University. Starting
in Spring 2008, this is a class that all students in the college are required to take.

The goals of the Logic and Computation course are to provide an introduction to formal
logic and its deep connections to computing. Logic is presented from a computational
perspective using the ACL2 Sedan theorem proving system. The goal of the course is
to introduce fundamental, foundational methods for modeling, designing, specifying and
reasoning about computation. The topics covered include propositional logic, recursion,
contracts, testing, induction, equational reasoning, termination analysis, term rewriting, and
various proof techniques. We show how to use logic to formalize the syntax and semantics
of the core ACL2s language, a simple LISP-based language with contracts. We then use
the ACL2s language to formally reason about programs, to model systems at various levels
of abstraction, to design and specify interfaces between systems and to reason about such
composed systems. We also examine decision procedures for fragments of first-order logic
and how such decision procedures can be used to analyze models of systems.

The students taking the Logic and Computation class have already taken a program-
ming class in the previous semester, in Racket. The course starts by reviewing some basic
programming concepts. The review is useful because at the freshman level students benefit
from seeing multiple presentations of key concepts; this helps them to internalize these con-
cepts. For example, in past semesters I have asked students to write very simple programs
(such as a program to append two lists together) during the first week of classes and a
surprisingly large number of students produce incorrect code.

During the programming review, we introduce the ACL2s language. This is the language
we use throughout the semester and it is similar to Racket. The syntax and semantics of the
core ACL2s language are presented in a mathematical way. We provide enough information
so that students can determine what sequence of glyphs form a well-formed expression
and how to formally evaluate well-formed expressions potentially containing user-defined
functions with constants as arguments (this is always in a first-order setting). This is a
pretty big jump in rigor for students and is advanced material for freshmen students, but
they already have great intuitions about evaluation from their previous programming class.
This intuition helps them understand the rigorous presentation of the syntax and semantics,
which in turns helps strengthen their programming abilities.

The lecture notes are sparse. It would be great to add more exercises, but I have not done
that yet. Over the course of many years, we have amassed a large collection of homework
problems, so students see lots of exercises, and working through these exercises is a great
way for them to absorb the material, but the exercises are not in the notes. You can think
of the lecture notes as condensed notes for the course that are appropriate for someone who
knows the material as a study guide. The notes can also be used as a starting point by

2 CHAPTER 1. INTRODUCTION

students, who should mark them up with clarifications as needed when they attend lectures.
I advise students to read the lecture notes before class. This way, during class they can focus
on the lecture instead of taking notes and they are better prepared to ask for clarifications.

When I started teaching the class, I used the ACL2 book, Computer-Aided Reasoning, An
Approach by Kaufmann, Manolios and Moore. However, over the years I became convinced
that using an untyped first-order logic was not the optimal way of introducing logic and
computation to students because they come in with a typed view of the world. That’s not to
say they have seen type theory; they have not. But, they are surprised when a programming
language allows them to subtract a string from a rational number. Therefore, with the help
of my Ph.D. student Harsh Chamarthi, I have focused on adding type-like capabilities to
ACL2s. Most notably, we added a new data definition framework to ACL2s that supports
enumeration, union, product, record, map, (mutually) recursive and custom types, as well
as limited forms of parametric polymorphism. We also introduced the defunc macro, which
allows us to formally specify input and output contracts for functions. These contracts
are very general, e.g., we can specify that / is given two rationals as input, and that the
second rational is not 0, we can specify that zip is given two lists of the same length as
input and returns a list of the same length as output and so on. Contracts are also checked
statically, so ACL2s will not accept a function definition unless it can prove that the function
satisfies its contracts and that for every legal input and every possible computation, it is
not possible during the evaluation of the function being defined to be in a state where some
other function is poised to be evaluated on a value that violates its input contract. I have
found that a significant fraction of erroneous programs written by students have contract
violations in them, and one of the key things I emphasize is that when writing code, one
needs to think carefully about the contracts of the functions used and why the arguments
to every function call satisfy the function’s contract. Contracts are the first step towards
learning how to specify interfaces between systems. With the move to contracts, the ACL2
book became less and less appropriate, which led me to write these notes.

I have distributed these notes to the students in Logic and Computation for several
years and they have found lots of typos and have made many suggestions for improvement.
Thanks and keep the comments coming!

Reasoning about Imperative Code

We have seen how to reason about programs written in the ACL2s language using the ACL2s
logic and the ACL2s theorem prover. How do we reason about programs written in other
languages? Can we use what we have learned so far or do we have to define a logic for
the language and then a theorem prover for that language and logic? We will explore these
questions in this chapter.

In Section 9.1 we introduce a simple imperative language (SIP) and define its semantics
using ACL2s. In contrast to ACL2s, imperative languages allow us to change the value of
variables, so procedures in imperative languages are not functions, e.g., they do not satisfy
the axioms of equality that ACL2s functions satisfy.

In Section 9.2, we show how to define the semantics of SIP programs by compiling SIP
programs into ACL2s programs. This allows us to easily generate executable code from
our SIP programs. It also allows us to use all the nice features of ACL2s to analyze SIP
programs, including tracing and property-based testing.

In Section 9.3, we discuss how to reason about SIP programs. First we reason about
the ACL2s versions of SIP programs and then we show how to build systems that allow
us to directly reason about SIP programs using invariants, loop invariants, preconditions,
postconditions, assumptions and guarantees. These systems work by generating verification
conditions based on invariants provided by programmers and do not require any expertise
with the reasoning engine used to discharge these proof obligations. Section 9.4 includes a
set of exercises reinforcing this kind of reasoning and includes a link to an invariant discovery
game that allows one to reason about SIP programs.

9.1 SIP: A Simple Imperative Language

We introduce SIP, a simple imperative language, via an example. Consider the following
simple SIP program.

program multiply
main(n, m: nat)
{ var res, cnt: int;

res := 0;

cnt := 0;

while (cnt < m)

{ cnt := cnt+1;
res = res+n;

}

return res;

180 Reasoning About Programs

SIP programs have a name; in the above example it is multiply. The SIP programs we
will consider have one procedure called main. In the program above, main has two inputs,
n and m. Both are of type nat. The SIP language has two types. The type int corresponds
to integers of arbitrary precision, i.e., there is no minimal integer and there is no maximal
integer. SIP also supports the type nat, which corresponds to integers greater than or equal
to 0.

All non-input variables need declarations. The variables res and cnt are declared to be
of type int. We use the assignment operator (:=) to assign initial values to the variables.

Next we have a while loop, consisting of the loop condition (cnt < m) and the body of
the loop, which updates the variables cnt and res.

Finally we have a return statement that indicates what the procedure returns. In
multiply, the value of res is returned.

Before we formalize the semantics of such programs, let us start by considering program
traces. We will do that with the simple approach of adding print statements as follows.

program multiply
main(n, m: nat)
{ var res, cnt: int;
res := 0;
cnt := 0;
while (cnt < m)
{ print(n, m, cnt, res);
cnt := cnt+1;
res := res+n;
}
print(n, m, cnt, res);
return res;

Now, imagine running the program with the inputs n = 7 and m = 4. The trace our
program generates is the following (without the header).

n m res cnt
7T 4 0 0
7T 4 7 1
7T 4 14 2
7T 4 21 3
7T 4 28 4

The trace makes it clear that the program computes n * m by repeatedly adding m to
res.

9.2 Semantics of SIP

To define the semantics of SIP, we will write a compiler that takes a SIP program and
generates an ACL2s representation. This compiler can be written in any language. We will
not define this compiler, but we will show what it generates for the multiply program.

Imperative Code 181

(sip-program
multiply
((natp n) (natp m))
((intp cnt) (intp res))
((res 0) (cnt 0))
(< cnt m)
((print n m cnt res)
(cnt . (+ 1 cnt))
(res . (+ res n)))
((print n m cnt res))

(res))

The above is a call of the ACL2s macro sip-program that include the name of the SIP
program (multiply), the input variables and their types, the declared variables and their
types, the initialization code, the while loop condition, the while loop body, where we either
have a print statement or an assignment operation. Note that we use alists to denote how a
variable gets updated. Then we have any post-loop statements and finally what, if anything,
gets returned.

Notice that the ACL2s representation is very close to the original SIP program and that
is by design because we want this step to be as simple and transparent as possible.

Now, the sip-program macro will wind up generating a list of definitions that provide
the semantics of multiply. The macro generates a list of utilities. One of those utilities
allows us to generate traces. More of these utilities will be introduced later. We will not
define the macro, but we will reveal what it generates.

First, the macro generates sip-multiply, an ACL2s version of multiply. In order to
define such a function, we need to deal with the while loop and this is done via the use of
a recursive helper function, sip-multiply-loop, as follows

:program

(definec sip-multiply-loop (n :nat m :nat cnt :int res :int) :int
(declare (ignorable n m cnt res))
(if (< cnt m)
(let ((ent (+ 1 cnt))
(res (+ res n)))
(sip-multiply-loop n m cnt res))
res))

(definec sip-multiply (n :nat m :nat) :int
(declare (ignorable n m))
(let ((res 0)
(cnt 0))
(sip-multiply-loop n m cnt res)))

Now, we can run the program as the following examples show.
(sip-multiply 7 4)
(sip-multiply 127 671)

182 Reasoning About Programs

Not only do we now have executable versions of SIP programs such as multiply, but
we also have access to all ACL2s capabilities. For example, we can use check= and test?
forms as shown below.

(check= (sip-multiply 7 4) (x* 7 4))

(test? (implies (and (natp n) (natp m))
(equal (sip-multiply n m) (* n m))))

The sip-program macro also generates utility functions for generating traces.

(definec sip-multiply-loop-trace (n :nat m :nat cnt :int res :int) :tl
(declare (ignorable n m cnt res))
(if (< cnt m)
(cons (list n m cnt res)
(let ((cnt (+ 1 cnt))
(res (+ res n)))
(sip-multiply-loop-trace n m cnt res)))
‘((,n ,m ,cnt ,res))))

(definec sip-multiply-trace (n :nat m :nat) :tl
(declare (ignorable n m))
(let ((res 0)
(cnt 0))
(app ’ ((multiply-trace)
(n m cnt res))
(sip-multiply-loop-trace n m cnt res))))

Here is an example of the trace utility functions in action.

(sip—multiply-trace 7 4)
(sip-multiply-trace 21 18)

In order to develop robust, usable tools, we have to deal with syntax checking, type
checking, error reporting, termination analysis, etc. during the compilation step. We will
ignore these issues as considering them in any depth will take us too far afield. We will
therefore assume that SIP programs are free of errors and that they are terminating.

Exercise 9.1 Define a compiler that given a SIP program generates the corresponding
sip-program form. You can use your favorite language to do that.

Exercise 9.2 Define a version of the sip-program macro that generates the forms shown
above.

Exercise 9.3 You may wonder why the functions generated by sip-program are defined in
:program mode. Come up with a SIP program that is terminating, but for which one of the
ACL2s functions generated by sip-program is non-terminating.

Imperative Code 183

9.3 Reasoning About SIP Programs

Now that we can compile SIP programs to ACL2s programs, we can reason about SIP
programs using ACL2s. Try the following exercise before continuing.

Exercise 9.4 Prove the following conjecture using paper and pencil. Then prove it using
ACL2s. Assume that sip-program generated :logic mode functions.

(implies (and (natp n)
(natp m))
(equal (sip-multiply n m) (* n m)))

Notice that since sip-multiply is a non-recursive program that calls sip-multiply-loop,
we really need a lemma about sip-multiply-loop. Also, for reasons we have already dis-
cussed in the context of tail recursive functions, we will not be able to prove a lemma about
sip-multiply-loop that includes constants: we will have to generalize. Once we have the
appropriate lemma, then the main theorem follows via equational reasoning.

There are many lemmas that can be used to prove the main theorem. We know we have
to generalize, so one idea is to prove a lemma that before contract completion is as close
as possible to this, i.e., we are trying to determine what sip-multiply-loop does given
arbitrary inputs.

(equal (sip-multiply-loop n m cnt res)
)

We can use ACL2s to help us discover an appropriate lemma (of course we need to
perform contract completion). Since we keep adding to res during the loop, we expect an
expression of the form (+ ... res). We are adding n each time through the loop, so we
should get something like (+ (* n ...) res). How many times do we add n? At the
beginning of the loop it is m, but at an arbitrary point during the loop we have already gone
through cnt iterations, so there should be (- m cnt) iterations left. So, we can try the
following.

(test?
(implies (and (natp n) (natp m) (intp cnt) (intp res))
(equal (sip-multiply-loop n m cnt res)
(+ (*n (- m cnt)) res))))

We get counterexamples, but they involve assignments where cnt is greater than m, which
never happens. We can add an extra hypothesis to account for that and we get.

(test?
(implies (and (natp n) (natp m) (intp cnt) (intp res)
(<= cnt m))
(equal (sip-multiply-loop n m cnt res)
(+ (*n (- m cnt)) res))))

No counterexamples are reported, so let us see if ACL2s can prove it.
(defthm mult-lemma
(implies (and (natp n) (natp m) (intp cnt) (intp res)
(<= cnt m))
(equal (sip-multiply-loop n m cnt res)

184 Reasoning About Programs

(+ (* n (- m cnt)) res))))

That worked, so we can try the main theorem, which now goes through using only
equational reasoning.

(thm
(implies (and (natp n) (natp m))
(equal (sip-multiply n m) (* n m))))

Here is another way to go about proving the main theorem. We will try to prove a
lemma of the following form.

(implies ...
(equal (sip-multiply-loop n m cnt res)
(* n m)))

The idea here is that, in addition to contract completion hypotheses, we want to identify
all the invariants that hold before and after sip-multiply-loop, as these invariants should
imply that the final result we get is (* n m). Again, we can use ACL2s to help us find these
invariants. We start with (<= cnt m) since we needed that in our first attempt.

(test?
(implies (and (natp n) (natp m) (intp cnt) (intp res)
(<= cnt m))
(equal (sip-multiply-loop n m cnt res)
(* n.m))))

ACL2s generates counterexamples that include negative numbers. We can rule such
examples by observing that cnt and res are always non-negative.

(test?
(implies (and (natp n) (natp m) (intp cnt) (intp res)
(<= cnt m) (<= 0 cnt) (<= 0 res))
(equal (sip-multiply-loop n m cnt res)
(* n m))))

ACL2s still generates counterexamples. There are counterexamples where res is not
even a multiple of n. Actually, our hypotheses do not relate res with the input variables at
all, so of course we are going to get counterexamples! What is the relationship between res
and the other variables? The answer to the question leads us to the following conjecture.

(test?
(implies (and (natp n) (natp m) (intp cnt) (intp res)
(<= cnt m) (<= 0 cnt) (<= 0 res) (= res (* cnt n)))
(equal (sip-multiply-loop n m cnt res)
(x nm))))

ACL2s did not find any counterexamples and it can prove the conjecture. In fact, we do
not even need all of the hypotheses, as the following theorem shows.

(defthm mult-lemma
(implies (and (natp n) (natp m) (intp cnt) (intp res)
(<= cnt m) (= res (* cnt n)))
(equal (sip-multiply-loop n m cnt res)
(* n m))))

Imperative Code 185

Again, the main theorem goes through using only equational reasoning.

(thm
(implies (and (natp n) (natp m))
(equal (sip-multiply n m) (* n m))))

So, we can reason about SIP programs. Are we done? No because this state of affairs is
not entirely satisfactory, for several reasons. One technical problem is that, as Exercise 9.3
shows, we cannot expect sip-program to generate :logic mode functions, unless we do
more work to ensure we can prove termination. But, the main objection to our current
approach is that a SIP programmer should not have to learn ACL2s in order to reason
about SIP programs.

We need another approach, one where the reasoning is done directly on SIP programs.
We use our running example to introduce the key ideas.

First, we need a mechanism by which we can express what it is that main is supposed to
do. We will use Guarantee statements at the end of main to specify what main is supposed
to do. For our example, main is supposed to set res to the product of n and m, so we have
the following Guarantee statement.

Guarantee: [res = nm |

The brackets are there to make it clear that this is not program text; it is an invariant,
a Boolean-valued statement that holds whenever program execution reaches the statement
(in this case, when main ends).

There is a dual statement that expresses what we can assume about the inputs, beyond
their types. That statement is the 4ssume statement. For example, if n and m were declared
to be of type int, then we could have added the following assumption at the beginning of
the program.

Assume: [n >=0 & m >= 0]

So, the specification of a procedure includes both the assumption and guarantee and a
procedure is correct if whenever it is given inputs that satisfy the types and the assumption,
then when the procedure finishes execution, the guarantee holds. Notice the similarity
between this and contracts in ACL2s.

In many verification systems, the terms Precondition and Postcondition are used
instead of Assume and Guarantee.

Now that we know how to specify what SIP programs are supposed to do, how do we
prove that they are correct? We are going to design a system where programmers do not
have to provide proofs. Instead, they only have to provide key insights. This is similar to
what we did when reasoning about the ACL2s version of the code using ACL2s. Once we
identified the main lemma, ACL2s took care of all the tedious equational reasoning for us.
SIP programmers will not even have to write out lemmas. Instead, they will only provide
loop invariants: invariants that hold right before the loop condition is evaluated. Suppose
that the user has provided loop invariant I, then they are claiming that I holds before and
after the loop, i.e., that I holds whenever program execution reaches the program locations
indicated below.

program multiply

main(n, m: nat)

{ var res, cnt: int;
res := 0;

186 Reasoning About Programs

cnt := 0;

while [I] (ecnt < m)

{ print(n, m, cnt, res);
cnt = cnt+1;
res := res+n;

[71
}

print(n, m, cnt, res);
return res;
Guarantee: | res = n*m |

We already saw that we can prove that the ACL2s version of the multiply program is
correct using mult-lemma. The same idea works for when reasoning about the SIP program
directly. Instead of requiring the user to specify types, we will infer the types from the
variable declarations, so we will only require the user to set I to cnt <= m & res = cnt
* n and the solver (ACL2s, but this is not something the programmer needs to know) can
prove correctness. In order to prove correctness, we first need to show that I is a loop
invariant, which means it satisfies the following two conditions.

1. I holds when program execution reaches the loop for the first time, and

2. Given any state where program execution has reached I and I holds, then I also holds
after one iteration of the loop. There are two cases. If the loop condition is false then
the loop body is not executed, so I trivially holds after the loop. Otherwise, the loop
condition is true, and then I must hold after the loop body is executed. Notice that
when the loop body is executed, variables get updated and program execution loops
back the beginning of the loop, so I has to hold for the updated values of the variables.

Once we prove that I is a loop invariant, we use it to show the guarantee. Our proof
obligation here is that whenever program execution reaches the end of the program, the
guarantee holds. To get to the end of the program, we have to get past the loop, which
means we satisfy I and the loop condition fails. If any such state satisfies the guarantee,
then we have proven program correctness.

This process of generating proof obligations is often called werification condition gener-
ation. Many tools for reasoning about various programming languages operate in this way.
While we will not define such a verification condition generator here, it is not hard to define
such a tool using ACL2s; in fact, the sip-program macro is what generates all the code
needed to generate verification conditions. We will show the proof obligations generated
when [is cnt <= m & res = cnt * n.

; Show that the invariant holds initially.
(thm
(let ((res 0) (cnt 0))
(implies (and (intp cnt)
(intp res)
(natp n)
(natp m))
(and (<= cnt m) (= res (* cnt n))))))

Imperative Code

187

’

Show that the invariant is inductive

(thm

; Show that the loop invariant implies the guarantee

(implies (and (and (intp cnt)

(intp res)

(natp n)

(natp m))
(< cnt m)

(and (<= cnt m) (= res (* cnt n))))
(and (<= (+ 1 cnt) m)
(= (+ res n) (* (+ 1 cnt) n)))))

(thm

Exercise 9.5 Provide a paper and pencil proof of the above proof obligations.

(implies (and (and (intp cnt)
(intp res)
(natp n)
(natp m))
(not (< cnt m))
(<= cnt m)

(= res (x cnt n)))
(equal res (x n m))))

9.4 SIP Exercises

Exercise 9.6 Play the invariant discovery game http://invgame.atwalter.com/ to gain
experience with loop invariants.

Exercise 9.7 Ezhibit a loop invariant, prove that it is a loop invariant and prove that it

implies the guarantee for the following SIP program.

program multiply-by-1000
main(k: int)

{

var res, i: int;

i :=0;

res := 10;

while [/] (i < 1000)

{ print(k, i, res);
res := res + k;
i=1+1;

[11
}

print(k, i, res);
Guarantee: [res=10+k*1000 |

188 Reasoning About Programs

Exercise 9.8 Ezxhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program mult-of-6
main(n: nat)
{ var cnt, res: int;
cnt := 0;
res := 0;
while [I] (ent < n)
{ print(n, cnt, res);
cnt := cnt + 1;
res := res + (cnt * cnt);

[7]
}

print(n, cnt, res);
Guarantee: [res = (m * (n + 1) * (1 + (2 *xn))) / 6]

Exercise 9.9 FEzxhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program summation
main(n: nat)
{ var i, sum: int;
sum := 0;
i =1,
while [I] (i <= n)
{ print(n, i, sum);
sum := sum + 1i;

i =1+ 1;
111

}

print(n, i, sum);
Guarantee: [sum = nx(n+1)/2 |

Exercise 9.10 Ezhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program summation2
main(n: nat)
{ var sum, cnt, mys: int;

sum := 0;
mys := 0;
cnt = 1;

while [I] (cnt <= n)

{ print(n, mys, cnt, sum);
sum := sum + cnt;
mys := cnt;

Imperative Code 189

cnt := cnt + 1;

[1]
}
print(n, mys, cnt, sum);
Guarantee: [sum = nx(n+1)/2 |

}

Exercise 9.11 Ezhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program mult-by-add
main (j, k: nat)
{ var i: int;
i:=0
while [I] (i < j*k)
{ print(j, k, i);
i=1i+1;
[
}
print(j, k, 1i);
Guarantee: [i = j*k]

Exercise 9.12 Ezhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program square-times-2
main(k: nat)
{ var res, cnt: int;
cnt := 0;
res := 0;
while [I] (ent < k)
{ print(k, cnt, res);
res := res + 2%k;
cnt := cnt + 1;
1]
}
print(k, cnt, res);
Guarantee: [res=2*k "2 |

Exercise 9.13 Ezhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the gquarantee for the following SIP program.

program square-times-const
main(k: nat, j: int)
{ var res, cnt: int;

cnt := 0;

res := 0;

190 Reasoning About Programs

while [I] (cnt < k)

{ print(k, j, cnt, res);
res := res + jx*k;
cnt := cnt + 1;

[11
}

print(k, j, cnt, res);
Guarantee: [res=j*k "2 |

Exercise 9.14 Ezhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the gquarantee for the following SIP program.

program cube
main(n: nat)

{

}

var cnt, res: int;

cnt := 0;

res := 0;

while [I] (ent < n)

{ print (m, cnt, res);
res := res + (3 * ((cnt+1) ~2)) + ((cnt+1) * -3) + 1;
cnt := cnt + 1;

[11
}

print (n, cnt, res);
Guarantee: [res = n "3 |

Exercise 9.15 Ezhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program cube2
main(n: nat)

{

var cnt, res, a, b: int;

cnt := 0;
res := 0;
a :=1;
b := 6;

while [/] (cnt < n)
{ print(n, cnt, a, b, res);

cnt := cnt + 1;
res := res + a;
a := a t+ b;

b :=b + 6;

[1]

print(n, cnt, a, b, res);
Guarantee: [res = n "3 |

Imperative Code 191

Exercise 9.16 Ezhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program int-square-root
main(n: nat)
{ var cnt, sqr, odd: int;

cnt := 0;
sqr := 1;
odd := 1;

while [I] (sqr <= n)
{ print (n, sqr, odd, cnt);
cnt := cnt+l;
odd := odd+2;
sqr := sqr+odd;
1]
}
print (n, sqr, odd, cnt);
Guarantee: [cnt "2 <= n & n < (cnt+1) "2 |

Exercise 9.17 Ezhibit a loop invariant, prove that it is a loop invariant and prove that it
implies the guarantee for the following SIP program.

program binary-product
main(a, b: nat)
{ var dig, cnt, res: int;

dig := a;
cnt := b;
res := 0;

while [/] (ent !'= 0)
{ print(a, b, dig, cnt, res);

if (cnt res := res + dig;
cnt := cnt - 1;
} else {

dig := 2xdig;
cnt := cnt / 2;
}
[1]
}
print(a, b, dig, cnt, res);
Guarantee: [res = axb |

