Property-Based Testing
In Industry

Pete Manolios
Northeastern

Logic and Computation, 1/24/2019

Trends in Functional Verification: A 2014 Industry Study

Harry D. Foster
Mentor Graphics Corporation
Wilsonville, Or

Harry Foster@mentor.com

ABSTRACT

Technical publications often make either subjective or
unsubstantiated claims about today’s functional verification
process—such as, 70 percent of a project’s overall effort is spent
in verification. Yet, there are very few credible industry studies
that quantitatively provide insight into the functional verification
process in terms of verification technology adoption, effort, and
effectiveness. To address this dearth of knowledge, a recent
world-wide, double-blind, functional verification study was
conducted, covering all electronic industry market segments. To
our knowledge, this 1s the largest independent functional
verification study ever conducted. This paper presents the findings
from our 2014 study and provides invaluable insight into the state
of the electronic industry today in terms of both design and
verification trends.

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Property-Based Testing in Industry

2007: Average 46%
2012: Average 56%
2% 2014: Average 57%

Design Projects

15%-20% 21%-30% 31%-40% 41%-50% 51%-60% 61%-70% 71%-80% >80%

Figure 3. Percentage of Project Time Spent in Verification

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Property-Based Testing in Industry

@ Doing Design
207

53%

45%

Mean Time Designer Spends doing
Design vs. Verification

2007 2010 2012 2014

Figure 5. Where Design Engineers Spend Their Time

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Property-Based Testing in Industry

B Test Planning
W Testbench Development

@ Creating Test and Running Simulation

W Debug

B Other

Figure 6. Where Verification Engineers Spend Their Time

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Property-Based Testing in Industry

| | m2007

Code coverage w2012
m2oid
Assertions

Functional coverage

Constrained-Random
Simulation

20% 30% 40% 50% 60% T0% 80% 90%
Design Projects

0% 10%

Figure 7. Dynamic Verification Technology Adoption Trends

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Fuzzing

Software testing technique that uses unexpected inputs to test
software.

This idea goes back to the 1950’s when random punched
cards were used to test programs.

What about using contracts?
This would solve lots of problems.

The ... work was inspired by being logged on to a modem during
a storm with lots of line noise. And the line noise was generating
junk characters that seemingly was causing programs to crash.
The noise suggested the term "fuzz".

--Barton Miller, University of Wisconsin (1988)

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Microsoft Research

TechFest2011

the

Basic idea:

in R&D

1.Run the program with first inputs,

2.gather constraints on inputs at conditional statements,
3.use a constraint solver to generate new test inputs,
4.repeat - possibly forever!

overage |
Data

TN T

Check for
Crashes
(AppVerifier)

Code Generate Solve
HD:> Coverage HD:> Constraints HD:> Constraints
(Nirvana) (TruScan) (23)

SAGE was developed in
collaboration with CSE

.

MSR algorithms
& code inside

Impact: since 2007

- 200+ machine years (in largest fuzzing lab in the world)

- 1 Billion+ constraints (largest SMT solver usage ever!)

- 100s of apps, 100s of bugs (missed by everything else...)

- Ex:1/3

of all Win7 WEX security bugs found by SAGE -

- Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs
- Millions of dollars saved (for Microsoft and the world)

- SAGEii

s now used daily in Windows, Office, etc.

SAGE: Whitebox Fuzzing for Security Testing

The SAGE team:
MSR: E. Bounimova, P. Godefroid, D. Molnar
CSE: M. Levin, Ch. Marsh, L. Fang, S. de Jong,...
+ thanks to all the SAGE users!
Windows: N. Bartmon, E. Douglas, D. Duran, I. Sheldon
Office: T. Gallagher, E. Jarvi, O. Timofte

SAGE is the first whitebox fuzzer

Research Challenges:

- How to recover from imprecision ? PLDI’05, PLDI’'11

- How to scale to billions of x86 instructions? NDSS’08
- How to check many properties together? EMSOFT’08
- How to leverage grammar specifications? PLDI’'08

- How to deal with path explosion ? POPL'07,TACAS’08
- How to reason precisely about pointers? ISSTA’09

- How to deal with floating-point instr.? ISSTA’10

- How to deal with input-dependent loops? ISSTA’11

+ research on constraint solvers

How bugs were found

(Win7 WEX Security)

Regression + All Others SAGE
Random testing

Microsoft’

Research

SAGE: Whitebox Fuzzing
for Security Testing

» See http://queue.acm.org/detail.cfm?id=2094081

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

http://queue.acm.org/detail.cfm?id=2094081

SAGE example

int foo(int x) { // x 1s an 1input
int y =x + 3;
1f (y == 13) abort(); // error
return 0;

¥

> A software error is a violation of a property the program should
satisfy

> In ACL2s, that would be a conjecture (or property) that is not true
» One can phrase many properties in terms of reachability

> If execution can reach a particular statement (e.g., abort) the
property is violated

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

SAGE example2

void top (char input[4] {

1int cnt=0;

1f (1nput[@] == 'b') cnt++;

1f (input[l] == "a') cnt++;

1f (input[2] == 'd') cnt++;

1f (input[3] == "!") cnt++;

1f (cnt >= 4) abort(); ?? error

¥

» The program takes four bytes as input and contains an error when
the value of the variable cnt is greater than or equal to four.

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

SAGE example in ACL2s

» Demo

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Security

» Not all software errors are security vulnerabilities
» But software security vulnerabilities are just software errors

> Linus Torvalds (11/2017): Some security people have scoffed at me
when | say that security problems are primarily “just bugs.” Those
security people are f'cking morons

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Next Time

» Propositional Logic
» Chapter 3

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

