
Property-Based Testing 

Pete Manolios

Northeastern

Logic and Computation, 1/23/2019



Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Objectives
Finish data definitions

Controlling ACL2s

Property-based testing

test? & thm




Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Data Definitions
Demo

Singleton types

Recognizers

Enumerated Types

Range Types

Product Types

Records

Constructors & Accessors

Listof Combinator

Union Types

Recursive Types

Data-driven Function Definitions

Mutually Recursive Data Types



Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Controlling ACL2s
:program mode turns off theorem proving in ACL2s


no termination analysis is attempted


ACL2s will still test contracts and report any errors it finds

useful for prototyping & experimenting


:logic mode is the default mode and allows you to switch back

you cannot define :logic mode functions if they depend on :program mode 
functions


Other useful settings (we used some of them in HWK 2)

(acl2s-defaults :set testing-enabled nil)

(set-defunc-termination-strictp nil)

(set-defunc-function-contract-strictp nil)

(set-defunc-body-contracts-strictp nil)

Documentation via :doc



Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Property-Based Testing
(definec even-natp (x :nat) :bool
  (natp (/ x 2)))

(definec even-intp (x: int) :bool
  (integerp (/ x 2)))

Here is how we test properties in ACL2s

(test? (implies (natp n)
                (equal (even-intp n)
                       (even-natp n))))

This gives us way more power than check= as ACL2s checks the property 
on a large number of examples (user-controlled); passes iff all checks pass

This is a property



Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Theorem Proving
(definec even-natp (x :nat) :bool
  (natp (/ x 2)))

(definec even-intp (x :int) :bool
  (intp (/ x 2)))

Here is a way of proving theorems in ACL2s

(thm (implies (natp n)
              (equal (even-intp n)
                     (even-natp n))))

This gives us way more power than check= & test? as it 
corresponds to an infinite number of checks, i.e., it is always true; 
passes if ACL2s proves it



Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Thm vs Test? on Properties

counterexample proof

unknown

thmtest?



Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

test? vs thm
test?


user only has to provide properties 

ACL2s does the rest: it automatically looks for counterexamples

a kind of “light-weight” formal methods


thm

highest assurance level

guarantees that the property is always true

requires human expert to interactively drive theorem prover

a kind of “heavy-weight” formal methods


Practical considerations

start with test?’s and convert to thm’s based on budget/risk analysis



Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Structure of Properties
Structure of test?/thm is  (test?/thm (implies H C))

Where H (Hypothesis) is of the form (and (R1 x1)…(Rn xn)…)

All the Ris are recognizers & the xis are variables in C (Conclusion) 


The second ... can be some other, extra assumptions


C is a boolean expression


We must perform contract checking on all the non-recognizers in H

The stuff after the recognizers must satisfy its contracts, assuming 
everything before it holds


We must perform contract checking for C

All functions in C must satisfy their contracts assuming H holds



Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Examples
(definec even-natp (x :nat) :bool
  (natp (/ x 2)))

(definec even-intp (x :int) :bool
  (intp (/ x 2)))

(test? (implies 
         (natp n)
         (equal (even-intp n)
                (even-natp n))))

(test? (implies 
         (intp n)
         (equal (even-intp n)
                (even-natp n))))

Contract checking passes

Contract checking fails

(even-natp n)
requires n to be a nat



Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Examples

(test? (implies 
         (and (natp n) (< 20/3 n))
         (equal (even-intp n)
                (even-natp n))))

(test? (implies 
         (< 20/3 n)
         (equal (even-intp n)
                (even-natp n))))

Contract checking passes

< knows n is a rational

Contract checking fails 

< does not know that n is a rational

(definec even-natp (x :nat) :bool
  (natp (/ x 2)))

(definec even-intp (x :int) :bool
  (intp (/ x 2)))



Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Examples

(test? (implies 
         (natp n)
         (equal (even-intp n)
                (even-natp n))))

(test? (implies
        (and (integerp n)
             (< n 0))
        (equal (even-intp n)
               (even-natp (* n -1)))))

(definec even-intp (x :int) :bool
  (if (natp x)
      (even-natp x)
    (even-natp (* x -1))))

The two properties characterize even-intp 
in terms of even-natp, so they show another 
way we could have defined even-intpDoes this property hold?

(definec even-natp (x :nat) :bool
  (natp (/ x 2)))

(definec even-intp (x :int) :bool
  (intp (/ x 2)))



Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Unifying Observation

(test? (implies 
         (and (natp n) (< 20/3 n))
         (equal (even-intp n)
                (even-natp n))))

Contract checking a test?/thm is equivalent to contract checking functions

For example, contract checking the test? is equivalent to checking the function

(defunc test1 (n)
  :input-contract (and (natp n) (< 20/3 n))
  :output-contract (booleanp (test1 (n))
  (equal (even-intp n)
         (even-natp n))))

In ACL2s, the specification language and programming language are the same!

(definec even-natp (x :nat) :bool
  (natp (/ x 2)))

(definec even-intp (x :int) :bool
  (intp (/ x 2)))



Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Demo
Examples in the slides

More examples



Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Next Time
Property-Based Testing in Industry

Fuzzing for Security Testing


Next Week: Propositional Logic

Read Chapter 3


