
The ACL2s Language

Pete Manolios

Northeastern

Logic and Computation, 1/17/2019

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Let
(let ((v1 x1)

 ...
 (vn xn))

 body)
binds its local variables, the vi, in parallel, to the values of the xi, and evaluates body
using that binding

For example:

(let ((x '(a b c))
 (y '(c d)))
 (app (app x y) (app x y)))

evaluates to (a b c c d a b c c d)

This saves us having to type '(a b c) and '(c d) multiple times

Notice how the use of quotes: instead of (list 'a 'b 'c) we have '(a b c)

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Let*

(let ((x '(a b c))
 (y '(c d)))
 (app (app x y) (app x y)))

Maybe we can avoid having to type (app x y) multiple times.
What about?

(let ((x '(a b c))
 (y '(c d))
 (z (app x y)))
 (app z z))

This does not work. Why not? Because let binds in parallel, so x
and y in the z binding are not yet bound

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Let*

(let ((x '(a b c))
 (y '(c d)))
 (app (app x y) (app x y)))

What we really want is a binding form that binds sequentially. That is what let* does.

(let* ((v1 x1)
 ...
 (vn xn))
 body)

binds its local variables, the vi, sequentially, to the values of the xi, and evaluates
body using that binding, so this works:

(let* ((x '(a b c))
 (y '(c d))
 (z (app x y)))
 (app z z))

let and let* give us abbreviation power and efficiency

Why might let be preferable to let*?

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Data Definitions
Demo

Singleton types

Recognizers

Enumerated Types

Range Types

Product Types

Records

Constructors & Accessors

Listof Combinator

Union Types

Recursive Types

Data-driven Function Definitions

Mutually Recursive Data Types

