The ACL2s Language

Pete Manolios
Northeastern

Logic and Computation, 1/17/2019



Let

> (let ((vl1l x1)

(vh xn))
body)

binds its local variables, the v1i, in parallel, to the values of the x1, and evaluates body
using that binding

> For example:
(let ((x "Ca b ©))
Cy "Cc d)))
Capp Capp x y) (app x y)))
> evaluatesto(a b c cdab c cd)
> This saves us havingtotype "(a b ¢) and '(c d) multiple times

» Notice how the use of quotes: instead of (1ist 'a 'b 'c) wehave "(a b ¢)

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



Let”

» Maybe we can avoid having to type (app x y) multiple times.
What about?

(let ((x "Ca b c)) (let ((x '"(a b )
Cy "C(c d)) (y "(c D))
(z Capp x ¥))) Capp Capp x y) Capp x y)))
Capp z 2))

» This does not work. Why not? Because let binds in parallel, so x
and y in the z binding are not yet bound

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



Let”

> What we really want is a binding form that binds sequentially. That is what Let* does.
(let* ((vl x1)

(vh xn))
body)

binds its local variables, the vi, sequentially, to the values of the x1, and evaluates
body using that binding, so this works:

(let* ((x "Ca b ©)) (let ((x "Ca b ©))
(y "(c d)) Cy "(c d)))

(z Capp x y)))
Capp z z)) Capp Capp x y) (app X y)))

> let and let* give us abbreviation power and efficiency

» Why might 1et be preferable to Let*?

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



Data Definitions

» Demo

> Singleton types

> Recognizers

> Enumerated Types

» Range Types

> Product Types

> Records

» Constructors & Accessors
e Listof Combinator

> Union Types

> Recursive Types

> Data-driven Function Definitions

> Mutually Recursive Data Types

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



