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Let
(let ((v1 x1)

        ...
        (vn xn))

    body)
binds its local variables, the vi, in parallel, to the values of the xi, and evaluates body 
using that binding


For example:

(let ((x '(a b c))
      (y '(c d)))
  (app (app x y) (app x y)))

evaluates to (a b c c d a b c c d)


This saves us having to type '(a b c) and '(c d) multiple times

Notice how the use of quotes: instead of (list 'a 'b 'c) we have '(a b c)
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Let*

(let ((x '(a b c))
      (y '(c d)))
  (app (app x y) (app x y)))

Maybe we can avoid having to type (app x y) multiple times. 
What about?

(let ((x '(a b c))
      (y '(c d))
      (z (app x y)))
  (app z z))

This does not work. Why not? Because let binds in parallel, so x 
and y in the z binding are not yet bound
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Let*

(let ((x '(a b c))
      (y '(c d)))
  (app (app x y) (app x y)))

What we really want is a binding form that binds sequentially. That is what let* does.

(let* ((v1 x1)
       ...
       (vn xn))
  body)

binds its local variables, the vi, sequentially, to the values of the xi, and evaluates 
body using that binding, so this works:

(let* ((x '(a b c))
       (y '(c d))
       (z (app x y)))
  (app z z))

let and let* give us abbreviation power and efficiency


Why might let be preferable to let*?
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Data Definitions
Demo

Singleton types

Recognizers

Enumerated Types

Range Types

Product Types

Records

Constructors & Accessors

Listof Combinator

Union Types

Recursive Types

Data-driven Function Definitions

Mutually Recursive Data Types


