The ACL2s Language

Pete Manolios
Northeastern

Logic and Computation, 1/14/2019

Objectives

» Basic Data Types
» EXpressions

» Syntax and Semantics of atomic data and primitives

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

ACL2 Universe

» We are done with the review of programming
» Now, we start a careful examination of the ACL2s language
» Programs manipulate objects from the ACL2 universe

> What’s in the universe?

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Quiz 1

>tis a
> A. symbol
> B. atom
> C. boolean
»D.A&B
»pE.B&C
»FA&B&C

Always pick the best answer

For example, if A, B and C are true, pick F

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

ACL2 Universe

All = Conses U Atoms

Every true-list is
a list, but not conversely,

eg., (x.1)

t, il Conses u {nil}

True-Lists = Ui TL
TLo={()}, TLk1=TL U {(cons x 1): xeAll, leTLi}

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Quiz 2

> (if () () 4) is
> A. an expression
> B. an atom
> C. alist
>D.A&C
»pE.B&C
>PFA&B&C

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

EXpressions

> [expr] denotes the semantics of expr

» or what expr evaluates to at the REPL
» Constants are expressions that evaluate to themselves
>[t] = t
> [N1l] = n1l
> [6] = 0
> [-21] = -21

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Booleans

» Built-in functions & signatures
>if: A1l x ALl x A1l — All

» Expressions?

> (1f nil @ 1) Yes; signature satisfied
> (1f nil 0) No; arity of if is 3, not 2
»(if 12 3) Yes; signature satisfied

» Semantics of 1f

p [(1f test then else)] = [then] , when [test] # nil

p [(1f test then else)] = [else] , when [test] = nil
» We specify semantics only for expressions (signature is satisfied)
» Examples

e [(1f t nil t)]=n1l

p[(if (if t nil t) 1 2)]=[0f nil 1 2)]=2

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Lazy vs Strict

» Semantics of 1f
b [(1f test then else)] = [then] , when [test] # nil
e [(1Lf test then else)] = [else] , when [test] = n1l
> 1f is lazy:
» first ACL2s evaluates test, i.e., it computes [tesf]
e if [test] # n1l then ACL2s returns [then]
» otherwise, it returns [else]

» SO, testis always evaluated, but only one of then, else is
» All other functions are strict
» ACL2s evaluates all of the arguments to the function

» Then ACL2s applies the function to evaluated results

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Equal

» Built-in functions & signatures
>if: A1l x ALl x All — All

» equal: All x AlLL — Boolean
» Semantics of equal

> [Cequal x y)I1 =t iff [x] =[y]

> i.e., [(equal xy)] =t if [x] =[y] and nil otherwise
» Examples

? [(equal 3 nil)]=n1l

» [(equal (1f (1f t nil t) 1 2) 2)]=t

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Booleanp

> The “p” Is for predicate: booleanp is a recognizer for Booleans

» A recognizer takes anything as input and returns a Boolean

This is weird; the only time we will see this

(definec booleanp (x :all)

(if (Cequal x t) [(booleanp 3)]

t
(equal x nil))) = { Semantics of booleanp }
[(if (Cequal 3 t) t (Cequal 3 nil))]
Semantics of Defined Functions _{ semantics of equal, i}
Example

[Cequal 3 nil)]

={ Semantics of equal }

nil

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Defined Functions, v1

How would you define and (conjunction)?

(definec and (a :bool b :bool) :bool
(if a b nil))

Not the way “and” is really defined! We’ll see why soon.

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Numbers

» Built-in functions & signatures
» integerp: ALl — Boolean
» rationalp: ALl — Boolean
» Semantics
> [(Lntegerp x)]is tiff [x] is an integer
2 [Crationalp x)]is tiff [x] is a rational
» In ACL2s, we get “real” numbers, not approximations (Java & C)

» Remember integers are rationals

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Numeric Functions

» Built-in functions & signatures
>+, *: Rational x Rational — Rational
» <: Rational x Rational — Boolean
» unary--: Rational — Rational
» unary-/: Rational \ {0} — Rational

» What is wrong with this definition?

(definec posp (a :all) :bool Contract violation!
(and (integerp a) (< @ a))) How do we fix?

f?
(definec posp (a :all) :bool Maybe and should be lazy*

(if (integerp @) (< @ a) nil)) But functions are strict
Macros! (Abbreviation power)

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Defined Functions, v2

Cand) -t and, or are macros
(and a) — d macros are first expanded

(and a b) — (if a b nil) |
Cand a b ¢) = (if a (if b ¢ nil) nil)) then evaluation happens

(or) — nil

(or a) — d

(or ab) = (if a a b)

(or abc) = (if aa (1if b b ¢c))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Defined Functions

(definec implies (a :all b :all) :bool
(if a (if b t nil) t))

(definec not (a :all) :bool
(if a nil t))

(definec iff (a :all b :all) :bool
(1f a
(if b t nil)
(if b nil t)))

(definec xor (a :all b :all) :bool
(1f a
(if b nil t)
(if b t nil)))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Rationals

» Built-in functions & signatures
» numerator: Rational — Integer
» denominator: Rational — Pos
> Examples
> [2/4] = 1/2
> [(/ 132 -765)] = -44/255

» Rules

» To simplify x/y, where X is an integer and y a natural number, divide both
by the gcd(x,y) to obtain a/b. If b=1, return a, else return a/b

» ACL2s simplifies rationals
» Note that [(equal 4/2 2)] =t

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Next Time

» Real quiz; install PollAnywhere
» Conses
» Contract violations

» Read to the end of section 2.8

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

