
The ACL2s Language

Pete Manolios

Northeastern

Logic and Computation, 1/14/2019

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Objectives
Basic Data Types

Expressions

Syntax and Semantics of atomic data and primitives

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

ACL2 Universe
We are done with the review of programming

Now, we start a careful examination of the ACL2s language

Programs manipulate objects from the ACL2 universe

What’s in the universe?

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Quiz 1
t is a

A. symbol

B. atom

C. boolean

D. A & B

E. B & C

F. A & B & C

Always pick the best answer

For example, if A, B and C are true, pick F

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

ACL2 Universe

Atoms Conses
Rationals

Symbols

Integers

Naturals Booleans
t, nil

Strings

x, var, y

 #\A

0,1

-2

-7/2

(1/2 a)

(1 2)

(len (list 1 2))

(if t 0 1)

(if 1)

(x . 1)

Chars.

…

“hello”

True-Lists = ∪i ∈ ℕ TLi
TL0 = { () }, TLi+1 = TLi ∪ {(cons x l): x∈All, l∈TLi}

All = Conses ∪ Atoms

…

Lists =
 Conses ∪ {nil}Every true-list is

a list, but not conversely,
e.g., (x . 1)

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Quiz 2
(if () () 4) is

A. an expression

B. an atom

C. a list

D. A & C

E. B & C

F. A & B & C

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Expressions
⟦expr⟧ denotes the semantics of expr

or what expr evaluates to at the REPL
Constants are expressions that evaluate to themselves

⟦t⟧ = t
⟦nil⟧ = nil
⟦6⟧ = 6
⟦-21⟧ = -21

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Booleans
Built-in functions & signatures

if: All × All × All ➝ All

Expressions?
(if nil 0 1)

(if nil 0)

(if 1 2 3)

Semantics of if
⟦(if test then else)⟧ = ⟦then⟧ , when ⟦test⟧ ≠ nil

⟦(if test then else)⟧ = ⟦else⟧ , when ⟦test⟧ = nil

We specify semantics only for expressions (signature is satisfied)
Examples

⟦(if t nil t)⟧ = nil

⟦(if (if t nil t) 1 2)⟧ = ⟦(if nil 1 2)⟧ = 2

Yes; signature satisfied

No; arity of if is 3, not 2

Yes; signature satisfied

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Lazy vs Strict
Semantics of if

⟦(if test then else)⟧ = ⟦then⟧ , when ⟦test⟧ ≠ nil

⟦(if test then else)⟧ = ⟦else⟧ , when ⟦test⟧ = nil

if is lazy:

first ACL2s evaluates test, i.e., it computes ⟦test⟧

if ⟦test⟧ ≠ nil then ACL2s returns ⟦then⟧

otherwise, it returns ⟦else⟧

So, test is always evaluated, but only one of then, else is
All other functions are strict

ACL2s evaluates all of the arguments to the function
Then ACL2s applies the function to evaluated results

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Equal
Built-in functions & signatures

if: All × All × All ➝ All

equal: All × All ➝ Boolean

Semantics of equal
⟦(equal x y)⟧ = t iff ⟦x⟧ = ⟦y⟧

i.e., ⟦(equal x y)⟧ = t if ⟦x⟧ = ⟦y⟧ and nil otherwise

Examples
⟦(equal 3 nil)⟧ = nil

⟦(equal (if (if t nil t) 1 2) 2)⟧ = t

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Booleanp
The “p” is for predicate: booleanp is a recognizer for Booleans

A recognizer takes anything as input and returns a Boolean

(definec booleanp (x :all) :boolean
 (if (equal x t)
 t
 (equal x nil)))

This is weird; the only time we will see this

 ⟦(booleanp 3)⟧
= { Semantics of booleanp }

 ⟦(if (equal 3 t) t (equal 3 nil))⟧
= { Semantics of equal, if}

 ⟦(equal 3 nil)⟧

= { Semantics of equal }
 nil

Semantics of Defined Functions

Example

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Defined Functions, v1

(definec and (a :bool b :bool) :bool
 (if a b nil))

How would you define and (conjunction)?

Not the way “and” is really defined! We’ll see why soon.

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Numbers
Built-in functions & signatures

integerp: All ➝ Boolean

rationalp: All ➝ Boolean

Semantics
⟦(integerp x)⟧ is t iff ⟦x⟧ is an integer

⟦(rationalp x)⟧ is t iff ⟦x⟧ is a rational

In ACL2s, we get “real” numbers, not approximations (Java & C)
Remember integers are rationals

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Numeric Functions
Built-in functions & signatures

+, *: Rational × Rational ➝ Rational

<: Rational × Rational ➝ Boolean

unary--: Rational ➝ Rational

unary-/: Rational \ {0} ➝ Rational

What is wrong with this definition?

(definec posp (a :all) :bool
 (and (integerp a) (< 0 a)))

Contract violation!

How do we fix?

(definec posp (a :all) :bool
 (if (integerp a) (< 0 a) nil))

Maybe and should be lazy?

But functions are strict

Macros! (Abbreviation power)

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Defined Functions, v2

(and) ➞ t
(and a) ➞ a
(and a b) ➞ (if a b nil)
(and a b c) ➞ (if a (if b c nil) nil))

(or) ➞ nil
(or a) ➞ a
(or a b) ➞ (if a a b)
(or a b c) ➞ (if a a (if b b c))

and, or are macros

macros are first expanded

then evaluation happens

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Defined Functions

(definec iff (a :all b :all) :bool
 (if a
 (if b t nil)
 (if b nil t)))

(definec xor (a :all b :all) :bool
 (if a
 (if b nil t)
 (if b t nil)))

(definec not (a :all) :bool
 (if a nil t))

(definec implies (a :all b :all) :bool
 (if a (if b t nil) t))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Rationals
Built-in functions & signatures

numerator: Rational ➝ Integer
denominator: Rational ➝ Pos

Examples

⟦2/4⟧ = 1/2

⟦(/ 132 -765)⟧ = -44/255

Rules
To simplify x/y, where x is an integer and y a natural number, divide both
by the gcd(x,y) to obtain a/b. If b=1, return a, else return a/b
ACL2s simplifies rationals
Note that ⟦(equal 4/2 2)⟧ = t

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Next Time
Real quiz; install PollAnywhere

Conses

Contract violations

Read to the end of section 2.8

