
Designing Programs
Introduction to ACL2s

Pete Manolios

Northeastern

Logic and Computation, 1/10/2019

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Objectives
Designing programs

Invariants & contracts

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Invariants
A key concept: invariants

What is an invariant?

A property that is always satisfied in all
executions of a program is an invariant

Properties are associated with program
locations

For example let I = (tlp l)

Then I is an invariant because at that
location in the program it always holds

Why?

The input contract requires it

(definec len (l :tl) :nat
 (if (endp l)
 0
 (+ 1 (len (rest l)))))

(definec len (l :tl) :nat
 (if (endp l)
 0
 (+ 1 (len {I}(rest l)))))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Contracts

(definec len (l :tl) :nat
 (if (endp l)
 0
 (+ 1 (len (rest l)))))

A simple, useful class of invariants that you should
always check are contracts

Every function has an input contract

For every function call, we must be able to

statically establish that the input contract of the
function is satisfied

What is the contract for endp?

that it takes a list as input

(we’ll define the semantics of ACL2s soon)

How do we know that the endp in len is given a list?

in Fundies 1, that was specified in a comment

wouldn’t it be better to make this part of the definition?

then our programming language can check for us

All elite programmers I
know think in terms of
invariants

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Contracts
(definec len (l :tl) :nat
 (if (endp l)
 0
 (+ 1 (len (rest l)))))

Body contracts

1. endp: (listp l)
2. rest: (consp l)
3. len: (tlp (rest l))

4. +: (rationalp 1)
 (rationalp (len (rest l)))

5. if: t

Function contract

(tlp l) => (natp (len l))

(definec len (l :tl) :nat
 {5}(if {1}(endp l)
 0
 {4}(+ 1 {3}(len {2}(rest l)))))

Every time you write a program, (not just for for this class), check body and function contracts!

You can think of invariants as assertions

{i} means that every time program execution reaches this point then {i} is true

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Defunc
Body contracts

1. endp: (listp l)
2. rest: (consp l)

3. len: (tlp (rest l))
4. +: (rationalp 1)

 (rationalp (len (rest l)))

5. if: t

Function contract

(tlp l) => (natp (len l))

Contract contracts

6. tlp: t (tlp is a recognizer)

7. len: (tlp l) (holds due to the input
contract!)

8. natp: t (natp is a recognizer)

(defunc len (l)
 :input-contract {6}(tlp l)
 :output-contract {8}(natp {7}(len l))
 {5}(if {1}(endp l)
 0
 {4}(+ 1 {3}(len {2}(rest l)))))

(defunc len (l)
 :input-contract (tlp l)
 :output-contract (natp (len l))
 (if(endp l)
 0
 (+ 1 (len (rest l)))))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Static Checking
Body contracts

1. endp: (listp l)
2. rest: (consp l)
3. len: (tlp (rest l))
4. +: (rationalp 1)

 (rationalp (len (rest l)))
5. if: t

Function contract, contract contracts …

Static checking of contracts

Before the definition is accepted we prove all the contracts

During execution, only top-level input contracts are checked

We have assurance that, at the language level, code will run without any runtime errors

Static checking of contracts is hard, which is why it is not supported in most PLs

(defunc len (l)
 :input-contract {6}(tlp l)
 :output-contract {8}(natp {7}(len l))
 {5}(if {1}(endp l)
 0
 {4}(+ 1 {3}(len {2}(rest l)))))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Dynamic Checking
Dynamic checking of contracts

We generate code to check the contracts at run-time

This code can incur a significant performance penalty

Contract violations are possible and will lead to an exception

Dynamic checking is supported via mechanisms such as assertions;
typically used only in development

(defunc len (l)
 :input-contract {6}(tlp l)
 :output-contract {8}(natp {7}(len l))
 {5}(if {1}(endp l)
 0
 {4}(+ 1 {3}(len {2}(rest l)))))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Append
;; app: TL x TL -> TL
;; Append two lists
;; (Recursive definition)

1. Identify data definitions
app: TL x TL -> TL

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Append
;; app: TL x TL -> TL
;; (app x y) concatenates x and y Write a description

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Append
;; app: TL x TL -> TL
;; (app x y) concatenates x and y

Let's review what a TL is:
nil | (cons All TL)

Let's write tests. How many?
At least 4 (2 x 2) because
each data def has two cases.

Note () = nil
'(1 2) = (list 1 2)

(check= (app () ()) ())
(check= (app nil (list 1 2)) (list 1 2))
(check= (app '(3) nil) '(3))
(check= (app '(3 2) '(1 2)) '(3 2 1 2))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Append

How do we come up with the definition?

Let's try using a data-driven definition.

There are two arguments. In cases where there are multiple arguments, we
have to think about which of the arguments controls the recursion in app?

It is simpler when only one argument is needed, so let's try it with the
first argument:

;; app: TL x TL -> TL
;; (app x y) concatenates x and y

(check= (app () ()) ())
(check= (app nil (list 1 2)) (list 1 2))
(check= (app '(3) nil) '(3))
(check= (app '(3 2) '(1 2)) '(3 2 1 2))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Append

TL: nil | (cons All TL)

Base Case:
app nil Y = Y

Recursive Case:
app (cons a B) Y = aBY
 = cons a (app B Y)

First, check that this plan works.
I do that without writing code

Let’s make sure we can
express aBY

;; app: TL x TL -> TL
;; (app x y) concatenates x and y

(check= (app () ()) ())
(check= (app nil (list 1 2)) (list 1 2))
(check= (app '(3) nil) '(3))
(check= (app '(3 2) '(1 2)) '(3 2 1 2))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Append

TL: nil | (cons All TL)

app nil Y
 = Y

app (cons a B) Y
 = cons a (app B Y)

Generate code

(check= (app () ()) ())
(check= (app nil (list 1 2)) (list 1 2))
(check= (app '(3) nil) '(3))
(check= (app '(3 2) '(1 2)) '(3 2 1 2))

;; app: TL x TL -> TL
;; (app x y) concatenates x and y

(definec app (x :tl y :tl) :tl
 (if (endp x)
 y
 (cons (first x) (app (rest x) y))))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Discussion
Develop your own notations

Visualize the unfolding of the recursion

Can we recur on y?

app X nil = X

app X (cons a B) = XaB

how do we do this?

we need snoc

Can we recur on both x & y?

Sure, but keep it simple (KISS)

Do we satisfy all contracts? Check: Body, Function, Contract.

(definec app (x :tl y :tl) :tl
 (if (endp x)
 y
 (cons (first x) (app (rest x) y))))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2018

rl

Let’s define it on the board.

;; rl: TL x Nat -> TL
;; Given a list, l, and a natural number, n, rl rotates the list
;; to the left n times

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2018

rl: First Attempt
;; rl: TL x Nat -> TL
;; Given a list, l, and a natural number, n, rl rotates the list
;; to the left n times

(definec rl (l :tl n :nat) :tl
 (cond ((equal n 0) l)
 (t (rl (app (rest l) (list (first l))) (- n 1)))))

Contract checking indicated a problem: if n>0 and l is empty, we
violate the contract of rest!

Most of the quiz submissions had errors that contract checking
would have caught.

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2018

rl: Second Attempt
;; rl: TL x Nat -> TL
;; Given a list, l, and a natural number, n, rl rotates the list
;; to the left n times

(definec rl (l :tl n :nat) :tl
 (cond ((equal n 0) l)
 ((endp l) l)
 (t (rl (app (rest l) (list (first l))) (- n 1)))))

Now, contract checking succeeds.

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Next Time
Basic Data Types

Expressions

Syntax and Semantics of atomic data and primitives

Read to the end of section 2.6

