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Objectives
Designing programs

Invariants & contracts
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Invariants
A key concept: invariants

What is an invariant?


A property that is always satisfied in all 
executions of a program is an invariant

Properties are associated with program 
locations


For example let I = (tlp l)

Then  I is an invariant because at that 
location in the program it always holds 

Why?

The input contract requires it

(definec len (l :tl) :nat
 (if (endp l)
    0
    (+ 1 (len (rest l)))))

(definec len (l :tl) :nat
 (if (endp l)
    0
    (+ 1 (len {I}(rest l)))))
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Contracts

(definec len (l :tl) :nat
 (if (endp l)
    0
    (+ 1 (len (rest l)))))

A simple, useful class of invariants that you should 
always check are contracts 

Every function has an input contract

For every function call, we must be able to 


statically establish that the input contract of the 
function is satisfied


What is the contract for endp? 

that it takes a list as input 


(we’ll define the semantics of ACL2s soon)


How do we know that the endp in len is given a list? 

in Fundies 1, that was specified in a comment


wouldn’t it be better to make this part of the definition? 


then our programming language can check for us

All elite programmers I 
know think in terms of 
invariants
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Contracts
(definec len (l :tl) :nat
 (if (endp l)
    0
    (+ 1 (len (rest l)))))

Body contracts

1. endp: (listp l)
2. rest: (consp l)
3. len: (tlp (rest l))

4. +: (rationalp 1)
         (rationalp (len (rest l)))

5. if: t

Function contract

(tlp l) => (natp (len l))

(definec len (l :tl) :nat
 {5}(if {1}(endp l)
    0
    {4}(+ 1 {3}(len {2}(rest l)))))

Every time you write a program, (not just for for this class), check body and function contracts!


You can think of invariants as assertions


{i} means that every time program execution reaches this point then {i} is true
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Defunc
Body contracts


1. endp: (listp l)
2. rest: (consp l)

3. len: (tlp (rest l))
4. +: (rationalp 1)

         (rationalp (len (rest l)))

5. if: t

Function contract

(tlp l) => (natp (len l))

Contract contracts

6. tlp: t (tlp is a recognizer)


7. len: (tlp l) (holds due to the input 
contract!)


8. natp: t (natp is a recognizer)

(defunc len (l)
  :input-contract {6}(tlp l)
  :output-contract {8}(natp {7}(len l))
  {5}(if {1}(endp l)
    0
    {4}(+ 1 {3}(len {2}(rest l)))))

(defunc len (l)
  :input-contract (tlp l)
  :output-contract (natp (len l))
  (if(endp l)
    0
   (+ 1 (len (rest l)))))
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Static Checking
Body contracts


1. endp: (listp l)
2. rest: (consp l)
3. len: (tlp (rest l))
4. +: (rationalp 1) 

         (rationalp (len (rest l)))
5. if: t

Function contract, contract contracts …

Static checking of contracts


Before the definition is accepted we prove all the contracts

During execution, only top-level input contracts are checked

We have assurance that, at the language level, code will run without any runtime errors


Static checking of contracts is hard, which is why it is not supported in most PLs

(defunc len (l)
  :input-contract {6}(tlp l)
  :output-contract {8}(natp {7}(len l))
  {5}(if {1}(endp l)
    0
    {4}(+ 1 {3}(len {2}(rest l)))))
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Dynamic Checking
Dynamic checking of contracts


We generate code to check the contracts at run-time

This code can incur a significant performance penalty

Contract violations are possible and will lead to an exception


Dynamic checking is supported via mechanisms such as assertions; 
typically used only in development

(defunc len (l)
  :input-contract {6}(tlp l)
  :output-contract {8}(natp {7}(len l))
  {5}(if {1}(endp l)
    0
    {4}(+ 1 {3}(len {2}(rest l)))))
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Append
;; app: TL x TL -> TL
;; Append two lists
;; (Recursive definition)

1. Identify data definitions
app: TL x TL -> TL
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Append
;; app: TL x TL -> TL
;; (app x y) concatenates x and y Write a description
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Append
;; app: TL x TL -> TL
;; (app x y) concatenates x and y

Let's review what a TL is: 
nil | (cons All TL)

Let's write tests. How many?
At least 4 (2 x 2) because 
each data def has two cases.

Note () = nil
'(1 2) = (list 1 2)

(check= (app () ()) ())
(check= (app nil (list 1 2)) (list 1 2))
(check= (app '(3) nil) '(3))
(check= (app '(3 2) '(1 2)) '(3 2 1 2)) 
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Append

How do we come up with the definition?

Let's try using a data-driven definition.

There are two arguments. In cases where there are multiple arguments, we 
have to think about which of the arguments controls the recursion in app?

It is simpler when only one argument is needed, so let's try it with the 
first argument:

;; app: TL x TL -> TL
;; (app x y) concatenates x and y

(check= (app () ()) ())
(check= (app nil (list 1 2)) (list 1 2))
(check= (app '(3) nil) '(3))
(check= (app '(3 2) '(1 2)) '(3 2 1 2)) 
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Append

TL: nil | (cons All TL)

Base Case:
app nil Y        = Y

Recursive Case:
app (cons a B) Y = aBY 
                 = cons a (app B Y)

First, check that this plan works. 
I do that without writing code

Let’s make sure we can 
express aBY

;; app: TL x TL -> TL
;; (app x y) concatenates x and y

(check= (app () ()) ())
(check= (app nil (list 1 2)) (list 1 2))
(check= (app '(3) nil) '(3))
(check= (app '(3 2) '(1 2)) '(3 2 1 2)) 
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Append

TL: nil | (cons All TL)

app nil Y        
 = Y

app (cons a B) Y
 = cons a (app B Y)

Generate code

(check= (app () ()) ())
(check= (app nil (list 1 2)) (list 1 2))
(check= (app '(3) nil) '(3))
(check= (app '(3 2) '(1 2)) '(3 2 1 2)) 

;; app: TL x TL -> TL
;; (app x y) concatenates x and y

(definec app (x :tl y :tl) :tl
 (if (endp x)
      y
    (cons (first x) (app (rest x) y))))
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Discussion
Develop your own notations

Visualize the unfolding of the recursion

Can we recur on y? 


app X nil = X

app X (cons a B) = XaB 

how do we do this?

we need snoc


Can we recur on both x & y?

Sure, but keep it simple (KISS)


Do we satisfy all contracts? Check: Body, Function, Contract.

(definec app (x :tl y :tl) :tl
 (if (endp x)
      y
    (cons (first x) (app (rest x) y))))
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rl

Let’s define it on the board.

;; rl: TL x Nat -> TL
;; Given a list, l, and a natural number, n, rl rotates the list
;; to the left n times
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rl: First Attempt
;; rl: TL x Nat -> TL
;; Given a list, l, and a natural number, n, rl rotates the list
;; to the left n times

(definec rl (l :tl n :nat) :tl
  (cond ((equal n 0) l)
        (t (rl (app (rest l) (list (first l))) (- n 1)))))

Contract checking indicated a problem: if n>0 and l is empty, we 
violate the contract of rest!


Most of the quiz submissions had errors that contract checking 
would have caught.
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rl: Second Attempt
;; rl: TL x Nat -> TL
;; Given a list, l, and a natural number, n, rl rotates the list
;; to the left n times

(definec rl (l :tl n :nat) :tl
  (cond ((equal n 0) l)
        ((endp l) l)
        (t (rl (app (rest l) (list (first l))) (- n 1)))))

Now, contract checking succeeds. 
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Next Time
Basic Data Types

Expressions

Syntax and Semantics of atomic data and primitives

Read to the end of section 2.6


