
Designing Programs
Introduction to ACL2s

Pete Manolios

Northeastern

Logic and Computation, 1/9/2019

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Objectives
Course Webpages

Designing programs, review

Introduction to the ACL2s language

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Course Webpages
Review course webpages

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Overview of the Class
I will be releasing sparse lecture notes every so often

Read the lecture note before class

The point of college is to learn how to learn on your own

Expect to get lots of practice with that in this course

Related issues such as security, efficiency, applications will show up in class

Homeworks will introduce new concepts and applications (learning to learn)

We will be using Piazza (should all have gotten invitations)

No recordings allowed

No electronics in class without prior approval (phones, laptops)

Just turn off or mute your phones before class

We only meet for ~3 hours a week

Each of those hours costs you about $370, so make the most of it

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Quiz
;; rl: List x Nat -> List
;; Given a list, l, and a natural number, n, rl rotates the list
;; to the left n times

;; Primary consideration: correctness
;; No need to worry about efficiency

(check= (rl (list 1 2 3) 1) (list 2 3 1))
(check= (rl (list 1 2 3) 2) (list 3 1 2))
(check= (rl (list 1 2 3) 3) (list 1 2 3))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Designing Program
;; len: List -> Nat
;; Given a list, len returns the length of the list

1. Identify data definitions
2. Write a description

3. Test Cases (check= (len (list) 0))
(check= (len (list 1 2)) 2)

(definec len (l :tl) :nat
 4. Formalize contracts

5. Data-driven definition template

 (if (endp l)
 . . .
 (. . . (len (rest l)) . . .)))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Designing Program
;; len: List -> Nat
;; Given a list, len returns the length of the list

1. Identify data definitions
2. Write a description

3. Test Cases (check= (len (list) 0))
(check= (len (list 1 2)) 2)

(definec len (l :tl) :nat
4. Formalize contracts

5. Data-driven definition template

 (if (endp l)
 0
 (+ 1 (len (rest l)))))

6. Complete data-driven definition

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

ACL2s vs Racket
;; len: List -> Nat
;; Given a list, len returns the length of the list

(check= (len (list) 0))
(check= (len (list 1 2)) 2)

(definec len (l :tl) :nat

 (if (endp l)
 0
 (+ 1 (len (rest l)))))

(check-expect (len (list) 0))
(check-expect (len (list 1 2)) 2)

(define (len l)

 (if (empty? l)
 0
 (+ 1 (len (rest l)))))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

ACL2s vs Racket
;; len: List -> Nat
;; Given a list, len returns the length of the list

(definec len (l :tl) :nat

 (if (endp l)
 -1
 (+ 1 (len (rest l)))))

(define (len l)

 (if (empty? l)
 -1
 (+ 1 (len (rest l)))))

ACL2s will not accept the above definition, but Racket will.

Contracts allow ACL2s to check function signatures.

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

ACL2s
We will use ACL2s, based on ACL2, which consists of

a LISP-based language with contracts

a logic that makes it clear how to state properties and prove theorems

a theorem prover that automates much of the tedious effort involved and guarantees that
we did not make mistakes.

ACL2 won the software system award from the ACM.

It is used in industry, eg, AMD, Rockwell, IBM, Intel, GE, Centaur, …

We show how to use logic to formalize the syntax and semantics of the core ACL2s
language

We then use the ACL2s language to

formally reason about programs

to model systems at various levels of abstraction

to design and specify interfaces between systems

to reason about such composed systems

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Why is len Well-Defined?
(definec len (l :tl) :nat
 (if (endp l)
 0
 (+ 1 (len (rest l)))))

Why does this definition make sense?

Because it terminates; we’ll cover that later

A key idea every time you define a program is
to convince yourself that on every recursive
call, some parameter decreases in a well-
founded way

Hmm, can lists be circular? then what?

Lists are non-circular in ACL2s, which is why
this works

Termination is one of the key ideas in CS

Note that data driven definitions always
terminate

That's why it is a good idea to use the template

(definec len (l :tl) :nat
 (if (endp l)
 (+ 1 (len (rest l)))
 0))

What if I wrote this?

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Next Time
Tour of ACL2s: install ACL2s and experiment with it

rl: Define and test the function using Racket or …

Skim the lecture notes

Lecture notes release announcement coming on Piazza

