Designing Programs
Introduction to ACL2s

Pete Manolios
Northeastern

Logic and Computation, 1/9/2019

Objectives

» Course Webpages
» Designing programs, review

» Introduction to the ACL2s language

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Course Webpages

» Review course webpages

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Overview of the Class

> | will be releasing sparse lecture notes every so often
» Read the lecture note before class
> The point of college is to learn how to learn on your own
> Expect to get lots of practice with that in this course
> Related issues such as security, efficiency, applications will show up in class
» Homeworks will introduce new concepts and applications (learning to learn)
> We will be using Piazza (should all have gotten invitations)
» No recordings allowed
> No electronics in class without prior approval (phones, laptops)
> Just turn off or mute your phones before class
> We only meet for ~3 hours a week

» Each of those hours costs you about $370, so make the most of it

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Quiz

;; rl: List x Nat -> List
; Given a list, 1, and a natural number, n, rl rotates the list

)

;; to the left n times

;5 Primary consideration: correctness
; No need to worry about efficiency

)

(check= (rl (list 1 2 3) 1) (list 2 3 1))
(check= (r1 (list 1 2 3) 2) (list 3 1 2))
(check= (rl (11ist 1 2 3) 3) (list 1 2 3))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Designing Program

;5 len: List -> Nat 1. ldentify data definitions
;5 Given a list, len returns the length of the list o Write a description

(definec len (1 :tl) :nat
(1f (endp 1)

4. Formalize contracts

((len (rest 1)) . . D)) 5. Data-driven definition template

(check= (len (list) 0))

(check= (len (list 1 2)) 2) 3. Test Cases

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Designing Program

;5 len: List -> Nat 1. ldentify data definitions
;5 Given a list, len returns the length of the list o Write a description

(definec len (1 :tl) :nat

(1f (endp 1)
0
(+ 1 (len (rest 1))))) 5. Data-driven definition template

6. Complete data-driven definition

4. Formalize contracts

(check= (len (list) 0))

(check= (len (list 1 2)) 2) 3. Test Cases

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

ACL2s vs Racket

;5 len: List -> Nat
;; Given a list, len returns the length of the list

(definec len (1 :tl) :nat (define (len 1)
(1if (endp 1) (1f (empty? 1)
0 0
(+ 1 (len (rest 1))))) (+ 1 (len (rest 1)))))
(check= (len (1list) 0)) (check-expect (len (list) 0))
(check= (len (list 1 2)) 2) (check-expect (len (list 1 2)) 2)

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

ACL2s vs Racket

;5 len: List -> Nat
;; Given a list, len returns the length of the list

(definec len (1 :tl) :nat (define (len 1)
(1f (endp 1) (1f (empty? 1)
-1 -1
(+ 1 (Ien (rest 1))))) (+ 1 (len (rest 1)))))

ACL2s will not accept the above definition, but Racket will.
Contracts allow ACL2s to check function signatures.

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

ACL2s

2 We will use ACL2s, based on ACL2, which consists of
> a LISP-based language with contracts
> a logic that makes it clear how to state properties and prove theorems

> a theorem prover that automates much of the tedious effort involved and guarantees that
we did not make mistakes.

> ACL2 won the software system award from the ACM.
e It is used in industry, eg, AMD, Rockwell, IBM, Intel, GE, Centaur, ...

» We show how to use logic to formalize the syntax and semantics of the core ACL2s
language

» We then use the ACL2s language to
> formally reason about programs
> to model systems at various levels of abstraction
> to design and specify interfaces between systems

P to reason about such composed systems

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Why is len Well-Defined?

» Why does this definition make sense? (definec len (1 :tl) :nat
(1f (endp 1)
> Because it terminates; we’ll cover that later 0

> A key idea every time you define a program is (+ 1 (len (rest 1)))))

to convince yourself that on every recursive
call, some parameter decreases in a well-
founded way

» Hmm, can lists be circular? then what?
(definec len (1 :tl) :nat

> Lists are non-circular in ACL2s, which is why (if Cendp 1)
this works (+ 1 (len (rest 1)))
0))

> Termination is one of the key ideas in CS

» Note that data driven definitions always

terminate What if | wrote this?
> That's why it is a good idea to use the template

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Next Time

> Tour of ACL2s: install ACL2s and experiment with it
> rl: Define and test the function using Racket or ...
» Skim the lecture notes

» Lecture notes release announcement coming on Piazza

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

