Equational Reasoning

Pete Manolios
Northeastern

Logic and Computation, 2/14/2019



Conjectures

» Given a conjecture you want to prove you should

» Check contracts & perform contract completion if needed

» Make sure you understand what the conjecture is claiming

> See if you can find a counterexample

> |If you can’t try to prove that the conjecture is a theorem

» One often iterates over the last two steps

» Possibly split the conjecture into lemmas (eg, if of form (and ...))
> |f the conjecture seems true, can you generalize it?

» For example given (app (app a a) a) = (app a (app a a)), generalize
to (app (app a b) c) = (app a (app b c))
> Notice that the generalized conjecture is much more powerful

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



Using Theorems

» During the proof process, you have all the theorems we have
proved so far

> All the axioms (car-cdr axioms, if axioms, . . .)

> All the definitional axioms (def of app, len, ...)

> All the contract theorems (contracts of app, len, ...)

» Theorems can be used anywhere in the proof with any instantiation

> They are a great weapon that will help you prove theorems

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



How to Prove Theorems

2 (Generalization

> Exportation: extract the context by rewriting the conjecture into the form:
[C1 A C2 A ... ACn] = RHS where there are as many hyps as possible

» Contract completion

» Context, Derived Context. What obvious things follow? Common patterns:
> (endp x), (tlp x): x=nil
> (tlp x), (consp x): (tlp (rest x))
> P1 A... A On = Y: Derive ¢1,...,n and use MP to @

» Goal, Proof. Use the proof format in class.

» For equality, start with LHS/RHS and end with RHS/LHS or start w/ LHS &
reduce, then start w/ RHS & reduce to the same thing

> For transitive relation (=, <, <, ...) same proof format works

> For anything else reduce to t

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



Del Example

(definec in (a :all X :tl) :bool
(and (consp X)
(or (equal a (first X))
(in a (rest X)))))

(definec del (a :all X :tl) :tl
(cond

(Cendp x) nil)
(Cequal a (first x)) (rest x))
(t (cons (first x) (del a (rest x))))))

Is this conjecture true? (A:yes, B:no)
(tlp x) => [(in a x) => (not (in a (del a x)))]

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



Del: Failed Proof

(definec 1in (a :all X :tl1) :bool (definec del (a :all X :tl) :tl

(and (consp X) (cond
(or (equal a (first X)) (Cendp x) nil)
(in a (rest X))))) (Cequal a (first x)) (rest x))

(t (cons (first x) (del a (rest x))))))

(implies Cl. (tlp x)
Cand (tlp x) C2. (consp x)
(consp x) C3. a = (first x)
Cequal a (first x))) C4. (in a x)
(implies (in a x)
(not (in a (del a x)))))) (not (in a (del a x)))

{ Def del, C2, C3 }
(not (in a (rest x)))

Failed proof suggests counterexample: ((x (1 1)) (a 1))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



Fix del

(definec 1in (a :all X :tl1) :bool (definec del (a :all X :tl) :tl

(and (consp X) (cond
(or (equal a (first X)) (Cendp x) nil)
(in a (rest X))))) (Cequal a (first x)) (rest x))

(t (cons (first x) (del a (rest x))))))

» Modify del so that it is true
(tlp x) = [(in a x) => (not (in a (del a x)))]

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



Del fixed

(definec 1in (a :all X :tl1) :bool (definec del (a :all X :tl) :tl

(and (consp X) (cond
(or (equal a (first X)) (Cendp x) nil)
(in a (rest X))))) (Cequal a (first x)) (del a (rest x)))

(t (cons (first x) (del a (rest x))))))

» Qriginal conjecture
(tlp x) = [(1n a x) = (nhot (1in a (del a x)))]
» Contract checking, completion? Nothing to do.

» Generalization? Is this a theorem? Yes/No
(tlp x) == (not (in a (del a x)))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



Del Proofs: Proof Checker

http://checker.atwalter.com/

(definec 1in (a :all X :tl1) :bool (definec del (a :all X :tl) :tl

(and (consp X) (cond
(or (equal a (first X)) (Cendp x) nil)
(in a (rest X))))) (Cequal a (first x)) (del a (rest x)))

(t (cons (first x) (del a (rest x))))))

> (tlp x) A (endp x) = (not (1n a (del a x)))

» (tlp x) A (consp x) A (equal a (first x)) A
[(tlp (rest x)) = (not (in a (del a (rest x))))] =

(not (1in a (del a x)))
> (tlp x) A (consp x) A (not (equal a (first x))) A
[(tlp (rest x)) = (not (1in a (del a (rest x))))] =

(not (1n a (del a x)))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



