
Equational Reasoning

Pete Manolios

Northeastern

Logic and Computation, 2/14/2019

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Conjectures
Given a conjecture you want to prove you should

Check contracts & perform contract completion if needed

Make sure you understand what the conjecture is claiming

See if you can find a counterexample

If you can’t try to prove that the conjecture is a theorem

One often iterates over the last two steps

Possibly split the conjecture into lemmas (eg, if of form (and …))

If the conjecture seems true, can you generalize it?

For example given (app (app a a) a) = (app a (app a a)), generalize
to (app (app a b) c) = (app a (app b c))

Notice that the generalized conjecture is much more powerful

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Using Theorems
During the proof process, you have all the theorems we have
proved so far

All the axioms (car-cdr axioms, if axioms, . . .)

All the definitional axioms (def of app, len, …)

All the contract theorems (contracts of app, len, ...)

Theorems can be used anywhere in the proof with any instantiation

They are a great weapon that will help you prove theorems

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

How to Prove Theorems
Generalization

Exportation: extract the context by rewriting the conjecture into the form:
[C1 ∧ C2 ∧ … ∧ Cn] ⇒ RHS where there are as many hyps as possible

Contract completion

Context, Derived Context. What obvious things follow? Common patterns:

(endp x), (tlp x): x=nil

(tlp x), (consp x): (tlp (rest x))

φ1 ∧… ∧ φn ⇒ ψ: Derive φ1,…,φn and use MP to ψ

Goal, Proof. Use the proof format in class.

For equality, start with LHS/RHS and end with RHS/LHS or start w/ LHS &
reduce, then start w/ RHS & reduce to the same thing

For transitive relation (⇒, <, ≤, …) same proof format works

For anything else reduce to t

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Del Example

Is this conjecture true? (A:yes, B:no)
(tlp x) => [(in a x) => (not (in a (del a x)))]

(definec in (a :all X :tl) :bool
 (and (consp X)

 (or (equal a (first X))
 (in a (rest X)))))

(definec del (a :all X :tl) :tl
 (cond
 ((endp x) nil)
 ((equal a (first x)) (rest x))
 (t (cons (first x) (del a (rest x))))))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Del: Failed Proof

C1. (tlp x)
C2. (consp x)
C3. a = (first x)
C4. (in a x)

 (not (in a (del a x)))
= { Def del, C2, C3 }
 (not (in a (rest x)))

(implies
 (and (tlp x)
 (consp x)
 (equal a (first x)))
 (implies (in a x)
 (not (in a (del a x))))))

Failed proof suggests counterexample: ((x ’(1 1)) (a 1))

(definec in (a :all X :tl) :bool
 (and (consp X)

 (or (equal a (first X))
 (in a (rest X)))))

(definec del (a :all X :tl) :tl
 (cond
 ((endp x) nil)
 ((equal a (first x)) (rest x))
 (t (cons (first x) (del a (rest x))))))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Fix del

Modify del so that it is true
(tlp x) => [(in a x) => (not (in a (del a x)))]

(definec in (a :all X :tl) :bool
 (and (consp X)

 (or (equal a (first X))
 (in a (rest X)))))

(definec del (a :all X :tl) :tl
 (cond
 ((endp x) nil)
 ((equal a (first x)) (rest x))
 (t (cons (first x) (del a (rest x))))))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Del fixed

Original conjecture
(tlp x) => [(in a x) => (not (in a (del a x)))]

Contract checking, completion? Nothing to do.
Generalization? Is this a theorem? Yes/No

(tlp x) => (not (in a (del a x)))

(definec del (a :all X :tl) :tl
 (cond
 ((endp x) nil)
 ((equal a (first x)) (del a (rest x)))
 (t (cons (first x) (del a (rest x))))))

(definec in (a :all X :tl) :bool
 (and (consp X)

 (or (equal a (first X))
 (in a (rest X)))))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Del Proofs: Proof Checker

(tlp x) ∧ (endp x) ⇒ (not (in a (del a x)))

(tlp x) ∧ (consp x) ∧ (equal a (first x)) ∧
 [(tlp (rest x)) ⇒ (not (in a (del a (rest x))))] ⇒

 (not (in a (del a x)))
(tlp x) ∧ (consp x) ∧ (not (equal a (first x))) ∧

 [(tlp (rest x)) ⇒ (not (in a (del a (rest x))))] ⇒

 (not (in a (del a x)))

(definec del (a :all X :tl) :tl
 (cond
 ((endp x) nil)
 ((equal a (first x)) (del a (rest x)))
 (t (cons (first x) (del a (rest x))))))

(definec in (a :all X :tl) :bool
 (and (consp X)

 (or (equal a (first X))
 (in a (rest X)))))

http://checker.atwalter.com/

