Equational Reasoning

Pete Manolios
Northeastern

Logic and Computation, 2/11/2019



Complexity Analysis

(definec sum (nh :nat) :nat
(1f Cequal n 0)
0
(+ n (sum (- n 1)))))

» What is the time complexity of this function?
> Build a table with inputs and #arithmetic operations

> |t takes time exponential in the size of the input because n
requires log(n) bits to represent

» For example if the input is 10N, that is of length n, so the size is n
» But sum takes 2*10n operations, so O(10") number of ops
> With SAT, no one could come up with a polynomial time algorithm

» What about sum?

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



Complexity Analysis

(definec sum (nh :nat) :nat (defunc fsum (n :nat) :nat
(1f Cequal n 0) (/ (*n (+n1l) 2)
0

(+ n (sum (- n 1)))))

» What is the time complexity of fsum?
> Build a table with inputs and #arithmetic operations
> |t always takes 3 operations so O(1) number of ops

> In contrast to SAT, we found an efficient algorithm!

> In fact, fsum algorithmic is exponentially better than sum

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



Reasoning About Arithmetic

(definec sum (nh :nat) :nat (defunc fsum (n :nat) :nat
(1f Cequal n 0) (/ (*n (+n1l)) 2)
0

(+ n (sum (- n 1)))))

» We want to prove that a more clever version is equivalent
(implies (natp n)
(equal (sum n)
(fsum n)))

» How? By “mathematical induction” (think about 1800)

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



Exponential Improvement

(definec sum (nh :nat) :nat (defunc fsum (n :nat) :nat
(1f Cequal n 0) (/ (*n (+n1l)) 2)
0

(+ n (sum (- n 1)))))

> Base case:
(natp n) A (equal n @) = (sumn) = (/ (* n n+l) 2)

> Induction step:
(natp n) A n = 0 A
[(natp n-1) = (sum n-1) = (/" (* n-1 n) 2)]

= (sum n) = (/ (* n ntl) 2)

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



ACL2s Demo

» Show that sum takes exponential time
» The importance of tail recursion

2 fsum to the rescue

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



Lessons Learned

> Algorithmic complexity is vitally important: consider big-data, Web
> Take algorithms as soon as possible
» As a computer scientist, always think about complexity
> But, correctness is most important: fast, but wrong is not good
> Planes, trains and automobiles (not the movie) crash
» Wrong simulation results for weather, nuclear testing, experiments...

» Correctness is mostly what we care about in this class
> Powerful idea: define correctness using simplest definitions (the spec)
» Then define efficient implementation and prove equivalence

> Allows one to reason using the spec, but execute using efficient code

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



