
Equational Reasoning

Pete Manolios

Northeastern

Logic and Computation, 2/11/2019

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Complexity Analysis

What is the time complexity of this function?

Build a table with inputs and #arithmetic operations

It takes time exponential in the size of the input because n
requires log(n) bits to represent

For example if the input is 10n, that is of length n, so the size is n

But sum takes 2*10n operations, so O(10n) number of ops

With SAT, no one could come up with a polynomial time algorithm

What about sum?

(definec sum (n :nat) :nat
 (if (equal n 0)
 0
 (+ n (sum (- n 1)))))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Complexity Analysis
(definec sum (n :nat) :nat
 (if (equal n 0)
 0
 (+ n (sum (- n 1)))))

(defunc fsum (n :nat) :nat
 (/ (* n (+ n 1)) 2))

What is the time complexity of fsum?

Build a table with inputs and #arithmetic operations

It always takes 3 operations so O(1) number of ops

In contrast to SAT, we found an efficient algorithm!

In fact, fsum algorithmic is exponentially better than sum

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Reasoning About Arithmetic

We want to prove that a more clever version is equivalent

(implies (natp n)
 (equal (sum n)
 (fsum n)))

How? By “mathematical induction” (think about 1800)

(definec sum (n :nat) :nat
 (if (equal n 0)
 0
 (+ n (sum (- n 1)))))

(defunc fsum (n :nat) :nat
 (/ (* n (+ n 1)) 2))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Exponential Improvement

Base case:

(natp n) ∧ (equal n 0) ⇒ (sum n) = (/ (* n n+1) 2)

Induction step:

 (natp n) ∧ n ≠ 0 ∧
 [(natp n-1) ⇒ (sum n-1) = (/ (* n-1 n) 2)]

⇒ (sum n) = (/ (* n n+1) 2)

(definec sum (n :nat) :nat
 (if (equal n 0)
 0
 (+ n (sum (- n 1)))))

(defunc fsum (n :nat) :nat
 (/ (* n (+ n 1)) 2))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

ACL2s Demo
Show that sum takes exponential time

The importance of tail recursion

fsum to the rescue

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Lessons Learned
Algorithmic complexity is vitally important: consider big-data, Web

Take algorithms as soon as possible

As a computer scientist, always think about complexity

But, correctness is most important: fast, but wrong is not good

Planes, trains and automobiles (not the movie) crash

Wrong simulation results for weather, nuclear testing, experiments…

Correctness is mostly what we care about in this class

Powerful idea: define correctness using simplest definitions (the spec)

Then define efficient implementation and prove equivalence

Allows one to reason using the spec, but execute using efficient code

