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Definitional Axioms
When we admit a function with defunc, we get two axioms:


ic ⇒ (f x1 ... xn) = body (Recall binding power of =)

ic ⇒ oc

Similarly for definec: generate the corresponding defunc

In proofs we will not explicitly mention input contracts when using 
a function definition because contract completion (test?!)
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Instantiation (PL)
A substitution σ is a list of the form ((atom1 form1) … (atomn formn))


the atoms are the “targets” (no repetitions) and the forms are their “images”

by f|σ we mean, substitute every occurrence of a target by its image

e.g.: (p ∨ q ∨ r)|((p q) (q (p ∧ s)) (s u)) =  q ∨ (p ∧ s) ∨ r


Instantiation: If f is valid, so is f|σ

e.g.: since p ∨ ¬p is valid, so is (p ⊕ q) ∨ ¬(p ⊕ q) (σ is ((p (p ⊕ q))))


A substitution σ is a list of the form ((var1 term1) … (varn termn))

the vars are the “targets” (no repetitions) and the terms are their “images”

by f|σ we mean, substitute every free occurrence of a target by its image

(cons x (let ((y z)) y))|((x a) (y b) (z c) (w d)) = (cons a (let ((y c)) y))

Instantiation: If f is a theorem, so is f|σ

(len (list x)) = 1 is theorem, so is (len (list (list x y))) = 1
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Instantiation Examples
A substitution σ is a list of the form ((var1 term1) … (varn termn))


the vars are the “targets” (no repetitions) and the terms are their “images”

by f|σ we mean, substitute every free occurrence of a target by its image


Instantiation: If f is a theorem, so is f|σ

Are the following substitutions correct? A:yes, B:no

(foo (cons (aapp w y) z))|((w (aapp b c)) (y (list a b)) (z (foo a)))

(foo (cons (aapp (aapp b c) (list a b)) (foo a)))

(cons 'a b)|((a (cons a (list c))) (b (cons c nil)))

(cons 'a (cons c nil)) 

(cons x (f x y f))|((x (cons a b)) (f x) (y (aapp y x)))

(cons (cons a b) (f (cons a b) (aapp y x) x))
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Example 1
(endp x) ⇒ (aapp (aapp x y) z) = (aapp x (aapp y z))

Proof?

First, exportation: rewrite the conjecture so that we have as many 
hypotheses as possible (Propositional logic!). Nothing to do here.

Then, contract completion: add needed hyps

(tlp x) ∧ (tlp y) ∧ (tlp z) ∧ (endp x) ⇒

(aapp (aapp x y) z) = (aapp x (aapp y z))

Next, generate context, derived context, goal and proof
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Example 1
C1:(tlp x)

C2:(tlp y)
C3:(tlp z)

C4:(endp x)

D1:x=nil { Def tlp C1, C4, cons axioms}
Goal:(aapp (aapp x y) z) = (aapp x (aapp y z))

  (aapp (aapp x y) z) 
= { Def aapp, D1 }

  (aapp y z) 
= { Def aapp, D1 }

  (aapp x (aapp y z))

(definec aapp (x :tl y :tl) :tl
 (if (endp x)
      y
    (cons (first x) (aapp (rest x) y)]

Notation to close off all parens

Feel free to use on exams

Conjecture:
(tlp x) ∧ (tlp y) ∧ (tlp z) ∧ (endp x) ⇒ 

(aapp (aapp x y) z) = (aapp x (aapp y z))

Context


Derived Context


Proof 

Typically skip goal in hand proofs



Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Example 2
(aapp (aapp x y) z) = (aapp x (aapp y z))

Exportation (nothing), contract completion:

(tlp x) ∧ (tlp y) ∧ (tlp z) ⇒ 

(aapp (aapp x y) z) = (aapp x (aapp y z))

Proof?

We can’t prove this right now. It will require induction

What can we prove?
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Example 3
(consp x) ∧ 
(aapp (aapp (rest x) y) z) = (aapp (rest x) (aapp y z))
⇒ (aapp (aapp x y) z) = (aapp x (aapp y z))

Exportation, Contract completion:

(tlp x) ∧ (tlp y) ∧ (tlp z) ∧ (consp x) ∧ 
(aapp (aapp (rest x) y) z) = (aapp (rest x) (aapp y z))
⇒ (aapp (aapp x y) z) = (aapp x (aapp y z))
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Example 3
C1:(tlp x)

C2:(tlp y)

C3:(tlp z)

C4:(consp x)

C5:(aapp (aapp (rest x) y) z) = (aapp (rest x) (aapp y z))

Proof
   (aapp (aapp x y) z)  

(definec aapp (x :tl y :tl) :tl
 (if (endp x)
      y
    (cons (first x) (aapp (rest x) y)]
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Example 4
True or false?
(implies (consp x)
         (implies (and (tlp x)
                       (tlp y))
                  (implies (endp x)
                           (equal (aapp x y) (rrev y)))))
(definec rrev (x :tl) :tl
 (if (endp x) 
      ()
    (aapp (rrev (rest x)) (list (first x)))))

Prove/disprove it in groups. 
A: we have a proof
B: we have a counterexample
C:not sure??
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Propositional Skeleton
(implies (consp x)

         (implies (and (tlp x)

                       (tlp y))

                  (implies (endp x)

                           (equal (aapp x y) (rrev y)))))

A
B
C

D E

   A ⇒ (B ∧ C ⇒ (D ⇒ E))
=  A ∧ B ∧ C ⇒ (D ⇒ E)
=  A ∧ B ∧ C ∧ D ⇒ E

(implies (and (consp x)

              (tlp x)

              (tlp y)

              (endp x))

         (equal (aapp x y) (rev y)))

Exportation!

During exportation we 

only manipulate the 

propositional skelton
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Context

C1.(consp x)

C2.(tlp x)

C3.(tlp y)

C4.(endp x)

D1. x=nil {Def tlp, C2, C4, cons axioms}

D2. nil   {C1, D1, cons axioms} (or {C1, C4, cons axioms})

(implies (and (consp x)

              (tlp x)

              (tlp y)

              (endp x))

         (equal (aapp x y) (rev y)))
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Next Time
More Equational Reasoning

This is new for most of you, so start practicing


