
Equational Reasoning

Pete Manolios

Northeastern

Logic and Computation, 1/31/2019

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Objectives
Review Equational Reasoning

Decision Procedures

Complete Boolean Bases

DNF/CNF

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Equational Proofs
Which is the simplest expression equivalent to ¬(p ⊕ p ⇒ q)?

 ¬(p ⊕ (p ⇒ q))

≡ { ¬(p⊕q) ≡ (p≡q)}

 (p ≡ (p ⇒ q))

≡ { Shannon }

 (p ∧ (true ≡ (true ⇒ q))) ∨ (¬p ∧ (false ≡ (false ⇒ q)))

≡ { Constant Prop }

 (p ∧ q) ∨ (¬p ∧ false)
≡ { Constant Prop }

 p ∧ q

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Equational Proofs
We are going to use equational proofs throughout the semester!

An equational proof is just a sequence of equality preserving
transformations

 To show that f=g is valid, we have a proof of the form:

 f

= { hint 1 }

 f1

= { hint 2 }

 . . .

= { hint n+1 }

 g

If g is a validity (e.g., true), then this is a proof that f is valid

Hints should contain enough information to understand the equality

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Equational Proofs
If the formulas are Boolean, we can instead use this form

 f

≡ { hint 1 }

 f1

≡ { hint 2 }

 . . .

≡ { hint n+1 }

 g

By transitivity of = and ≡

 if f = (≡) f1 and … and fn = (≡) g, then

then f = (≡) g

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Equational Proofs
If we have a transitive operator, say ⇒, then this also works

 f

⇒ { hint 1 }

 f1

⇒ { hint 2 }

 . . .

⇒ { hint n+1 }

 g

Can mix in ≡’s. By transitivity of ⇒ and ≡

 if f ⇒/≡ f1 and … and fn ⇒/≡ g, then f ⇒ g

Other transitive operators include <, >, ≤, ≥, etc.

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

ACL2s Decision Procedure
ACL2s is a decision procedure for propositional validities

Consider: a ∧ b ≡ a ≡ b ≡ a ∨ b

You can use ACL2s to check if this is valid:

(thm (implies (and (booleanp a)

 (booleanp b))

 (iff (iff (and a b) a)

 (iff b (or a b)))))

Notice hypotheses are needed because?

They’re not needed due to contract completion (iff, and, or can be applied to All)

The ACL2s universe contains more than Booleans and we want to make a claim
about Booleans

But, in ACL2s the above is a theorem even without the hypotheses

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Complete Boolean Base
Consider f, an arbitrary Boolean function of arity n

How many functions of arity n are there?

the truth table for any such function has 2n rows

each row has 2 possible values, so 2^(2n) such functions

e.g, if n=5, then 232 = 4,294,967,296 such functions

Can we represent all Boolean functions with the operators we have?

Yes. Take the disjunction of all the assignments that make f true

these assignments are just the rows in the truth table for which f is T

such assignment are conjunctive clauses: a conjunction of literals,
atoms or their negations

to represent f, we take the disjunction of all the conjunctive clauses

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Complete Boolean Base
Consider p ⊕ q. Here is the truth table:

The ∨ of all the assignments that make f T:

(p ∧ ¬q) ∨ (¬p ∧ q)

Notice we only used ∨, ∧ and ¬

{∨, ∧, ¬} is a complete Boolean base

If a set of Boolean operators can represent any Boolean function, it
is a complete Boolean base

Is there a simpler complete Boolean base?

Yes! Both {∨, ¬} and {∧, ¬} are complete

Because p ∧ q ≡ ¬(¬p ∨ ¬q) and p ∨ q ≡ ¬(¬p ∧ ¬q) (DeMorgan)

p q p ⊕ q

T T F

T F T

F T T

F F F

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

DNF & CNF
Disjunctive Normal Form (DNF): a disjunction of conjunctive clauses

e.g., true, p, q, p ∨ q, p ∧ q, (p ∧ ¬q) ∨ (¬p ∧ q)

notice: at most a 2-level formula over literals (atoms or their negations)

Conjunctive Normal Form (CNF): a conjunction of clauses, a disjunction of
literals

e.g., true, p, q, p ∨ q, p ∧ q, (¬p ∨ ¬q) ∧ (p ∨ q)

Given any function, we obtain CNF by taking the conjunction of the negation
of assignments that make f false

e.g., consider ⊕

we get the negation of (p ∧ q) ≡ ¬p ∨ ¬q

and the negation of (¬p ∧ ¬q)≡ p ∨ q

to wind up with (¬p ∨ ¬q) ∧ (p ∨ q)

the DNF was (p ∧ ¬q) ∨ (¬p ∧ q)

p q p ⊕ q

T T F

T F T

F T T

F F F

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

The Size of DNF/CNF
There can be many equivalent DNFs

Consider the function f

Our DNF construction gives us

a disjunction of 6 conjunctive clauses, each involving p,q,r

Is there a simpler DNF?

yes: ¬p ∨ q

So, DNF can be exponentially smaller than a truth table

great!

Quiz: consider the formula (a ∨ b) ∧ (c ∨ d) ∧ (e ∨ f) ∧ (g ∨ h) (has 4 clauses)

The minimal DNF for this formula has how many conjunctive clauses?

A: 1 B: 3
C: 6 D: 8
E: 16 F: 64

p q r f
T T T T
T T F T
T F T F
T F F F
F T T T
F T F T
F F T T
F F F T

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Normal Forms
Minimizing DNF has many applications

this is used to analyze the reliability of safety-critical systems

CNF is the input format of modern SAT solvers

this is the so-called DIMACS format

modern SAT solvers can solve industrial problems with 1M variables

There are many other “normal” forms for Boolean formulae

decision trees: widely used in machine learning

BDDs: very powerful representation used in verification, AI, program
analysis, …

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

SAT Cactus Plots
SAT Solver Improvement

[Source: Le Berre&Biere 2011]

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180 200

C
PU

 T
im

e
(in

 se
co

nd
s)

Number of problems solved

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat (2002)
Zchaff (2002)
Berkmin (2002)
Forklift (2003)
Siege (2003)
Zchaff (2004)
SatELite (2005)
Minisat 2 (2006)
Picosat (2007)
Rsat (2007)
Minisat 2.1 (2008)
Precosat (2009)
Glucose (2009)
Clasp (2009)
Cryptominisat (2010)
Lingeling (2010)
Minisat 2.2 (2010)
Glucose 2 (2011)
Glueminisat (2011)
Contrasat (2011)
Lingeling 587f (2011)

4From: Le Berre&Biere 2011

