
Boolean Logic

Pete Manolios

Northeastern

Logic and Computation, 1/30/2019

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Objectives
Q&A

P vs NP

Properties of Boolean Operators

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

P vs NP
Is there an algorithm that given a Boolean formula returns “yes” if it is SAT else “no”?

Easy. Construct truth table

But the complexity is exponential

The number of rows in the truth table is 2n, where n is the number of atoms

Is there an efficient algorithm for determining Boolean satisfiability?

Efficient means an algorithm that in the worst case runs in polynomial time

Godel asked this question in a letter he wrote to von Neumann in 1956

No one knows, although this is one of the most studied questions in CS

Most experts believe that no polynomial time algorithm exists

An assignment is a certificate for SAT: using it to check satisfiability is “easy” (P-Time)

But, coming up with a satisfying assignment is “hard”

If we checking solutions to a problem is easy, is it also easy to solve the problem?

There is a large class of “hard” problems that can be solved efficiently if SAT can be
solved efficiently

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Clay Institute Millennium Problems

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Solution
Which is the simplest expression equivalent to ¬(p ⊕ p ⇒ q)?

 ¬(p ⊕ (p ⇒ q))

≡ { ¬(p⊕q) ≡ (p≡q)}

 (p ≡ (p ⇒ q))

≡ { Shannon }

 (p ∧ (true ≡ (true ⇒ q))) ∨ (¬p ∧ (false ≡ (false ⇒ q)))

≡ { Constant Prop }

 (p ∧ q) ∨ (¬p ∧ false)
≡ { Constant Prop }

 p ∧ q

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Properties
Review lecture notes

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Equational Proofs
We are going to use equational proofs throughout the semester!

An equational proof is just a sequence of equality preserving
transformations

 To show that f=g is valid, we have a proof of the form:

 f

= { hint 1 }

 f1

= { hint 2 }

 . . .

= { hint n+1 }

 g

If g is a validity (e.g., true), then this is a proof that f is valid

Hints should contain enough information to understand the equality

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Equational Proofs
If the formulas are Boolean, we can instead use this form

 f

≡ { hint 1 }

 f1

≡ { hint 2 }

 . . .

≡ { hint n+1 }

 g

By transitivity of = and ≡

 if f = (≡) f1 and … and fn = (≡) g, then

then f = (≡) g

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Equational Proofs
If we have a transitive operator, say ⇒, then this also works

 f

⇒ { hint 1 }

 f1

⇒ { hint 2 }

 . . .

⇒ { hint n+1 }

 g

By transitivity of ⇒ and ≡

 if f ⇒ f1 and … and fn ⇒ g, then f ⇒ g

Other transitive operators include <, >, ≤, ≥, etc.

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Your Mission …
Review lecture notes

You have to memorize the rules

Repeat

Read a section

Close lecture notes and write down equalities

Until: you can write equalities without thinking

Similar to learning your multiplication tables

Instantiation is used implicitly all the time

Associativity/commutativity is used all the time

While truth tables can be used for almost everything, they are too
slow, so you have to get comfortable with equational reasoning

