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Objectives
Q&A

P vs NP

Properties of Boolean Operators
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P vs NP
Is there an algorithm that given a Boolean formula returns “yes” if it is SAT else “no”? 

Easy. Construct truth table

But the complexity is exponential


The number of rows in the truth table is 2n, where n is the number of atoms 


Is there an efficient algorithm for determining Boolean satisfiability? 

Efficient means an algorithm that in the worst case runs in polynomial time 

Godel asked this question in a letter he wrote to von Neumann in 1956

No one knows, although this is one of the most studied questions in CS

Most experts believe that no polynomial time algorithm exists 


An assignment is a certificate for SAT: using it to check satisfiability is “easy” (P-Time)

But, coming up with a satisfying assignment is “hard”

If we checking solutions to a problem is easy, is it also easy to solve the problem?


There is a large class of “hard” problems that can be solved efficiently if SAT can be 
solved efficiently
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Clay Institute Millennium Problems 
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Solution
Which is the simplest expression equivalent to ¬(p ⊕ p ⇒ q)?


  ¬(p ⊕ (p ⇒ q)) 

≡  { ¬(p⊕q) ≡ (p≡q)} 

  (p ≡ (p ⇒ q)) 

≡  { Shannon } 

  (p ∧ (true ≡ (true ⇒ q))) ∨ (¬p ∧ (false ≡ (false ⇒ q))) 

≡  { Constant Prop } 

  (p ∧ q) ∨ (¬p ∧ false) 
≡  { Constant Prop } 

  p ∧ q
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Properties
Review lecture notes
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Equational Proofs
We are going to use equational proofs throughout the semester!

An equational proof is just a sequence of equality preserving 
transformations

 To show that f=g is valid, we have a proof of the form:

  f 

=  { hint 1 } 

  f1 

=  { hint 2 } 

  . . . 

=  { hint n+1 } 

  g 

If g is a validity (e.g., true), then this is a proof that f is valid

Hints should contain enough information to understand the equality
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Equational Proofs
If the formulas are Boolean, we can instead use this form

  f 

≡  { hint 1 } 

  f1 

≡  { hint 2 } 

  . . . 

≡  { hint n+1 } 

  g 

By transitivity of = and ≡

 if f = (≡) f1 and … and fn = (≡) g, then


then f = (≡) g
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Equational Proofs
If we have a transitive operator, say ⇒, then this also works


  f 

⇒  { hint 1 } 

  f1 

⇒  { hint 2 } 

  . . . 

⇒  { hint n+1 } 

  g 

By transitivity of ⇒ and ≡


 if f ⇒ f1 and … and fn ⇒ g, then f ⇒ g


Other transitive operators include <, >, ≤, ≥, etc.
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Your Mission …
Review lecture notes

You have to memorize the rules


Repeat 

Read a section


Close lecture notes and write down equalities


Until: you can write equalities without thinking


Similar to learning your multiplication tables


Instantiation is used implicitly all the time

Associativity/commutativity is used all the time

While truth tables can be used for almost everything, they are too 
slow, so you have to get comfortable with equational reasoning


