Reasoning About Programs
Panagiotis Manolios

Northeastern University

February 26, 2019
Version: 107

Copyright (©2019 by Panagiotis Manolios

All rights reserved. We hereby grant permission for this publication to be used for personal or
classroom use. No part of this publication may be stored in a retrieval system or transmitted
in any form or by any means other personal or classroom use without the prior written
permission of the author. Please contact the author for details.

Introduction

These lecture notes were developed for Logic and Computation, a freshman-level class taught
at the College of Computer and Information Science of Northeastern University. Starting
in Spring 2008, this is a class that all students in the college are required to take.

The goals of the Logic and Computation course are to provide an introduction to formal
logic and its deep connections to computing. Logic is presented from a computational
perspective using the ACL2 Sedan theorem proving system. The goal of the course is
to introduce fundamental, foundational methods for modeling, designing, specifying and
reasoning about computation. The topics covered include propositional logic, recursion,
contracts, testing, induction, equational reasoning, termination analysis, term rewriting, and
various proof techniques. We show how to use logic to formalize the syntax and semantics
of the core ACL2s language, a simple LISP-based language with contracts. We then use
the ACL2s language to formally reason about programs, to model systems at various levels
of abstraction, to design and specify interfaces between systems and to reason about such
composed systems. We also examine decision procedures for fragments of first-order logic
and how such decision procedures can be used to analyze models of systems.

The students taking the Logic and Computation class have already taken a program-
ming class in the previous semester, in Racket. The course starts by reviewing some basic
programming concepts. The review is useful because at the freshman level students benefit
from seeing multiple presentations of key concepts; this helps them to internalize these con-
cepts. For example, in past semesters I have asked students to write very simple programs
(such as a program to append two lists together) during the first week of classes and a
surprisingly large number of students produce incorrect code.

During the programming review, we introduce the ACL2s language. This is the language
we use throughout the semester and it is similar to Racket. The syntax and semantics of the
core ACL2s language are presented in a mathematical way. We provide enough information
so that students can determine what sequence of glyphs form a well-formed expression
and how to formally evaluate well-formed expressions potentially containing user-defined
functions with constants as arguments (this is always in a first-order setting). This is a
pretty big jump in rigor for students and is advanced material for freshmen students, but
they already have great intuitions about evaluation from their previous programming class.
This intuition helps them understand the rigorous presentation of the syntax and semantics,
which in turns helps strengthen their programming abilities.

The lecture notes are sparse. It would be great to add more exercises, but I have not done
that yet. Over the course of many years, we have amassed a large collection of homework
problems, so students see lots of exercises, and working through these exercises is a great
way for them to absorb the material, but the exercises are not in the notes. You can think
of the lecture notes as condensed notes for the course that are appropriate for someone who
knows the material as a study guide. The notes can also be used as a starting point by

2 CHAPTER 1. INTRODUCTION

students, who should mark them up with clarifications as needed when they attend lectures.
I advise students to read the lecture notes before class. This way, during class they can focus
on the lecture instead of taking notes and they are better prepared to ask for clarifications.

When I started teaching the class, I used the ACL2 book, Computer-Aided Reasoning, An
Approach by Kaufmann, Manolios and Moore. However, over the years I became convinced
that using an untyped first-order logic was not the optimal way of introducing logic and
computation to students because they come in with a typed view of the world. That’s not to
say they have seen type theory; they have not. But, they are surprised when a programming
language allows them to subtract a string from a rational number. Therefore, with the help
of my Ph.D. student Harsh Chamarthi, I have focused on adding type-like capabilities to
ACL2s. Most notably, we added a new data definition framework to ACL2s that supports
enumeration, union, product, record, map, (mutually) recursive and custom types, as well
as limited forms of parametric polymorphism. We also introduced the defunc macro, which
allows us to formally specify input and output contracts for functions. These contracts
are very general, e.g., we can specify that / is given two rationals as input, and that the
second rational is not 0, we can specify that zip is given two lists of the same length as
input and returns a list of the same length as output and so on. Contracts are also checked
statically, so ACL2s will not accept a function definition unless it can prove that the function
satisfies its contracts and that for every legal input and every possible computation, it is
not possible during the evaluation of the function being defined to be in a state where some
other function is poised to be evaluated on a value that violates its input contract. I have
found that a significant fraction of erroneous programs written by students have contract
violations in them, and one of the key things I emphasize is that when writing code, one
needs to think carefully about the contracts of the functions used and why the arguments
to every function call satisfy the function’s contract. Contracts are the first step towards
learning how to specify interfaces between systems. With the move to contracts, the ACL2
book became less and less appropriate, which led me to write these notes.

I have distributed these notes to the students in Logic and Computation for several
years and they have found lots of typos and have made many suggestions for improvement.
Thanks and keep the comments coming!

Definitions and Termination

5.1 The Definitional Principle

We’ve already seen that when you define a function, say

(defunc £ (x)
:input-contract ic
:output-contract oc
body)

that ACL2s adds the definitional axiom

ic = (f x) =body

and the function contract theorem

ic = oc

We now more carefully examine what happens when you define functions.
First, let’s see why we have to examine anything at all.
In most languages, one is allowed to write functions such as the following;:

(definec f (x :nat) :nat

+1 (£ x)))

This is a nonterminating recursive function.
Suppose we add the definitional axiom:

(natp x) = (£ x) =G 1 (f %)) (5.1)

and the function contract theorem:

(natp x) = (matp (f x)) (5.2)

This is unfortunate because we can now prove nil in ACL2s. If nil is a theorem, that
means that the ACL2s logic is unsound. Here is the proof of unsoundness. This is an
interesting proof that just uses the derived context.

D1. (f 1) =1 + (f 1) { Def £}
D2. 0 = 1 { D1, Contract £, Arith }

D3. nil { D2, evaluation }

96 Reasoning About Programs

As we have seen, once we have nil, we can prove anything. Therefore, this nontermi-
nating recursive equation introduced unsoundness. The point of the definitional principle
in ACL2s is to make sure that new function definitions do not render the logic unsound.
For this reason, ACL2s does not allow you to define nonterminating functions.

Almost all the programs you will write are expected to terminate: given some inputs,
they compute and return an answer. Therefore, you might expect any reasonable language to
detect nonterminating functions. However, no widely used language provides this capability,
because checking termination is undecidable: no algorithm can always correctly determine
whether a function definition will terminate on all inputs that satisfy the input contract.

We note that there are cases in which nontermination is desirable. In particular, reactive
systems, which include operating systems and communication protocols, are intentionally
nonterminating. For example, TCP (the Transmission Control Protocol) is used by appli-
cations to communicate on the Internet. TCP provides a communication service that is
expected to always be available, so the protocol should not terminate. Does that mean that
termination is not important for reactive systems? No, because reactive systems tend to
have an outer, nonterminating, loop consisting of terminating actions. Can we reason about
reactive systems in ACL2s? Yes, but how that is done will not be addressed in this chapter.

Question: does every nonterminating recursive equation introduce unsoundness?

Consider:

(definec f (x :all) :all
(f %))

This leads to the definitional axiom:

(f x) =(%

This cannot possibly lead to unsoundness since it follows from the reflexivity of equality.
Question: can terminating recursive equations introduce unsoundness?
Consider:

(definec f (x :all) :all
y)

This leads to the definitional axiom:

(f x) =y (5.3)
Which causes problems, e.g.,
t
= { Instantiation of (5.3) with ((y t) (x 0)) }
(£ 0)
= { Instantiation of (5.3) with ((y nil) (x 0)) }
nil
We got into trouble because we allowed a “global” variable. It will turn out that we can
rule out bad terminating equations with some simple checks.
So, modulo some checks we are going to get to soon, terminating recursive equations do

not introduce unsoundness, because we can prove that if a recursive equation can be shown
to terminate then there exists a function satisfying the equation.

Definitions and Termination 97

The above discussion should convince you that we need a mechanism for making sure
that when users add axioms to ACL2s by defining functions, then the logic stays sound.

That’s what the definitional principle does.

Definitional Principle for ACL2s

The definition

(defunc f (x1 ... x,)
:input-contract ic
:output-contract oc
body)

is admassible provided:

1. £ is a new function symbol, i.e., there are no other axioms about it. Functions are
admitted in the context of a history, a record of all the built-in and defined functions
in a session of ACL2s.

Why do we need this condition? Well, what if we already defined aapp? Then we
would have two definitions. What about redefining functions? That is not a good
idea because we may already have theorems proven about aapp. We would then have
to throw them out and any other theorems that depended on the definition of aapp.
ACL2s allows regular users to undo, but not redefine.
2. The x; are distinct variable symbols.

Why do we need this condition? If the variables are the same, say (defunc f (x x)
...), then what is the value of x when we expand(f 1 2)7

3. body is a term, possibly using f recursively as a function symbol, mentioning no
variables freely (see the discussion of what a free variable is in Chapter 4) other than
the x;;

Why? Well, we already saw that global variables can lead to unsoundness. When we
say that body is a term, we mean that it is a legal expression in the current history.

4. The function is terminating. This means that if you evaluate the function on any inputs
that satisfy the input contract, the function will terminate. As we saw, nontermination
can lead to unsoundness.

There are also two other conditions that I state separately.

5. ic = oc is a theorem.

6. The body contracts hold under the assumption that ic holds.

If admissible, the logical effect of the definition is to:

1. Add the Definitional Axziom for £: ic = [(f x; ... x,) = body].
2. Add the Contract Theorem for £: ic = oc.

But, how do we prove termination?
A very simple first idea is to use what are called measure functions. These are functions
from the parameters of the function under consideration into the natural numbers, so that

98 Reasoning About Programs

we can prove that on every recursive call the function terminates. Let’s try this with aapp.
What is a measure function for aapp?
How about the length of x? That works, i.e., (len x) is a measure function for aapp.
Measure Function Definition: m is a measure function for f if all of the following
hold.

1. m is an admissible function defined over the parameters of f;
2. m has the same input contract as f;
3. m has an output contract stating that it always returns a natural number; and

4. on every recursive call of £, m applied to the arguments to that recursive call decreases,
under the conditions that led to the recursive call.

Here then is a measure function for aapp:

(definec m (x :tl y :tl) :nat
(len x))

If you try admitting m in ACL2s, you get an error because y is not used in the body of
m. Here is one way to tell ACL2s to allow such definitions.

(definec m (x :tl y :tl) :nat
(declare (ignorable y))
(len x))

The above measure function is non-recursive, so it is easy to admit. Notice that we do
not use the second parameter. That is fine and it just means that the second parameter is
not needed for the termination argument.

The astute reader may be wondering if is possible to ease the restriction that m is defined
over the parameters of £ and only require that m is defined over a subset of the parameters
of £. That is possible, but to keep things simple we will not do that.

Next, we have to prove that m decreases on all recursive calls of aapp, under the conditions
that led to the recursive call. Since there is one recursive call, we have to show:

(implies (and (tlp x)
(tlp v
(not (endp x)))
(< (m (rest x) y) (m x y)))

which is equivalent to:

(implies (and (tlp x)
(tlp y)
(not (endp x)))
(< (len (rest x)) (len x)))

which is a true statement. How do we prove such statement? Using equational reasoning,

of course.
Wait, what about len? How do we know that len is terminating? We will take the

following as an axiom.

Decreasing-Len axiom:
(implies (consp x)

Definitions and Termination 99

(< (len (rest x)) (len x)))

This axiom tells us lists are finite! In Lisp you can actually have circular lists, in which
case len would be nonterminating, but that is not possible in ACL2s!
More examples:

(definec rrev (x :tl) :tl
(if (endp x)
nil
(aapp (rrev (rest x)) (list (first x)))))

Is this admissible? It depends if we defined aapp already. Suppose aapp is defined as
above. What is a measure function?

len.

What about (head and tail are not builtin but were defined previously):

(definec drop-last (x :tl) :tl
(if (equal (len x) 1)
nil
(cons (head x) (drop-last (tail x)))))
No. We cannot prove that it is nonterminating, e.g., when x is nil, what is (tail x)7?
The real issue here is that we are analyzing a function that has body contract violations,

e.g., when x is nil, our function tries to evaluate (head x). What about this version? Is
it admissible?

(definec drop-last (x :tl) :tl
(if (equal (len x) 1)
nil
(cons (first x) (drop-last (rest x)))))

No. In fact it is nonterminating. Why?
We can fix that in several ways.

Exercise 5.1 Define drop-last using a data-driven definition.

Here is the solution to the above exercise.

(definec drop-last (x :tl) :tl
(cond ((endp x) nil)
((endp (rest x)) nil)
(t (cons (first x) (drop-last (rest x))))))

An equivalent definition is the following.

(definec drop-last (x :tl) :tl
(if (endp (rest x))
nil
(cons (first x) (drop-last (rest x)))))

Exercise 5.2 Find a measure function for drop-last and prove that it works.

100 Reasoning About Programs

What about the following function?

(definec prefixes (1 :tl) :tl
(if (endp 1)
O
(cons 1 (prefixes (drop-last 1)))))

Is prefixes admissible?
Yes. It satisfies the conditions of the definitional principle; in particular, it terminates
because we are removing the last element from 1.

Exercise 5.3 What is a measure function for prefixes? Try to prove that it is a measure
function. What happened?

Does the following satisfy the definitional principle?

(definec f (x :int) :int
(if (equal x 0)
0
+1¢E ExDNN

No. It does not terminate.
What went wrong?
Maybe we got the input contract wrong. Maybe we really wanted natural numbers.

(definec f (x :nat) :int
(if (equal x 0)
0
+1E ExDNHN

Another way of thinking about this is: What is the largest type that is a subtype of
integer for which f terminates? Or, we could ask: What is the largest type for which £
terminates?

But, maybe we got the input contract right. Then we used the wrong data definition:

(definec f (x :int) :int
(cond ((equal x 0) 0)
(CGx0) (+1 (¢ -x10N
(t +1 E Ex1NN

Now f computes the absolute value of x (in a very slow way).
The other thing that should jump out at you is that the output contract could be (natp
(£ x)) for all versions of £ above.

5.2 Admissibility of common recursion schemes

We examine several common recursion schemes and show that they lead to admissible func-
tion definitions.
The first recursion scheme involves recurring down a list.

(defunc f (x1 ... x,)
:input-contract (and ... (tlp x;) ...)
:output-contract ...

Definitions and Termination 101

(if (endp x;)

(.. (£ ... (rest %) ...) ..)))

The above function has n parameters, where the i*” parameter, x;, is a list. The function
recurs down the list x;. The ...’s in the body indicate non-recursive, well-formed code, and
(rest x;) appears in the i*" position.

We can use (len x;) as the measure for any function conforming to the above scheme:

(defunc m (x7 ... x,)
:input-contract (and ... (tlp x;) ...)
:output-contract (natp (m x1 ... X))
(len x;))

That m is a measure function is obvious. The non-trivial part is showing that
(tlp x;) A (not (endp x;)) = (len (rest x;)) < (len x;)

which is easy to see.

So, this scheme is terminating. This is why all of the code you wrote in your introductory
programming class that was based on the list data definition terminates.

We can generalize the above scheme, e.g., consider:

(defunc f (%1 x2)
:input-contract (and (tlp x;) (tlp x2))
:output-contract (tlp (f x; x2))
(cond ((endp x1) x2)
((endp x2) x1)
(t (list (f (rest x;) (rest %))
(f (rest x1) (f (rest x1) (coms x5 X9)))))))

We now have three recursive calls and two base cases. Nevertheless, the function termi-
nates for the same reason: len decreases.
(defunc m (x; x9)

:input-contract (and (tlp x;) (tlp x2))

:output-contract (natp (m x; x32))

(len x1))

All three recursive calls lead to the same proof obligation:
(tlp x1) A (not (endp x1)) A (not (endp x3)) = (len (rest x;)) < (len x31)

Thinking in terms of recursion schemes and templates is good for beginners, but what
really matters is termination. That is why recursive definitions make sense.

Let’s look at one more interesting recursion scheme.
(defunc f (x1 ... x,)

:input-contract (and ... (natp x;) ...)

:output-contract ...

(if (equal x; 0)

(..o CEx 1000 000

102 Reasoning About Programs

The above is a function of n parameters, where the i*" parameter, x;, is a natural number.
The function recurs on the number x;. The ...’s in the body indicate non-recursive, well-
formed code, and (- x; 1) appears in the i*" position.

We can use x; as the measure for any function conforming to the above scheme:

(defunc m (x7 ... xp,)
:input-contract (and ... (natp x;) ...)
:output-contract (natp (m x1 ... X))
Xz‘)

That m is a measure function is obvious. The non-trivial part is showing that
(natp x;) A (not (equal x; 0)) = (- x; 1) < x;
which is easy to see.

So, this scheme is terminating. This is why all of the code you wrote in your beginning
programming class that was based on natural numbers terminates.

Exercise 5.4 We can similarly construct a recursion scheme for integers. Do it.

5.3 Complexity Analysis

Remember “big-Oh” notation? It is connected to termination. How?
Well if the running time for a function is O(n?), say, then that means that (roughly):

1. the function terminates; and

2. there is a constant c s.t. the function terminates “within” c - n? steps, where n is the
“size” of the input (the definition of “big-Oh” is a bit more complicated)

Thus, big-Oh analysis is just a refinement of termination, where we are not interested in
only whether a function terminates, but we also want an upper bound on how long it will
take to terminate.

Exercise 5.5 Claim: Let £ be a function that has one argument, n, that is a nat. If a
measure for £ is n, then f is a linear time function. Prove or disprove before reading
further.

Consider:

(definec-no-test fib (n :nat) :nat
(if (< n 2)
n
(+ (fib (- n 1))
(fib (- n 2)))))

The definec-no-test form is similar to a definec form, except that it does not perform
any testing when it tries to admit fib.

Exercise 5.6 A measure function for £ib is one that just returns n. Prove that this is a
measure function.

Definitions and Termination 103

The measure function in the above exercise tells us that there is no sequence of £ib calls
of length greater than n, but we can have a tree of calls, which we do in the case of fib, so
even with such a simple measure function, the running time can be exponential. Thus the
claim in Exercise 5.5 does not hold.

It should now be clear that a measure function does not count how many times a function
is called recursively! A measure function tells us close to nothing about the running time of
functions. To make this even clearer, consider the following definition.

(definec-no-test £ (n :nat) :nat
(fib n))

The function that always returns 0 is a measure function for f, yet £ takes exponential
time.

Given the above discussion, there is no reason to make measure functions as small as
possible. The goal is use measure functions that are easy to define and easy to reason about.

Let us test £ib to make it clear that it really is not a linear-time function. After admitting
the function here are some timing results.

(time$ (fib 40)) ; ~2 seconds = (fib 3) seconds
(time$ (fib 41)) ; ~3 seconds = (fib 4) seconds
(time$ (fib 42)) ; ~5 seconds = (fib 5) seconds
(time$ (fib 43)) ; ~8 seconds = (fib 6) seconds
(time$ (fib 44)) ; ~13 seconds (fib 7) seconds

What if I tried this?
(time$ (fib 200))

This would take about (fib 163) seconds, which is 5193981023518027157495786850488117
seconds, which is more than 1026 years, which is more than 106 times the age of our universe
(from the big bang until now).

You may wonder “How does he even know that, since computing (time$ (fib 163))
requires about (fib 126) seconds to compute, which is 96151855463018422468774568 sec-
onds, which is more than 10'® years, which is more than 10® times the age of our universe.”
Now, I'm wondering “How does the reader even know that, since computing (time$ (£ib
126)) requires” Enough of that; let’s get back to reasoning about programs.

Well, ACL2s has a very nice feature, which allows you to memoize functions. This gives
you language support for dynamic programming, a key idea in algorithms. Memoization
works by recording in a table the values of fib that you compute, so you never have to
compute fib on the same value more than once.

After defining fib, you can tell ACL2s to memoize the function with the following
command.

(memoize ’fib)

Now, you can run £ib on large numbers quickly. For example, the following form com-
pletes in 0 seconds.

(time$ (£fib 200)) ; Much faster than universe-scale computations!

104 Reasoning About Programs

5.4 Undecidability of the Halting Problem

Turing’s result that termination is undecidable is an amazing, fundamental result that high-
lights the limits of computation.

Here is a proof of the undecidability of the halting problem.

But first, a few basic observations about programs that will help us with the proof.

The first observation is that we can enumerate all programs. That means that we can
create a sequence (list) indexed by the natural numbers in such a way that every program
appears exactly once in the sequence. In fact, there is a function f that given a natural
number, i, returns the " program.

The second observation is that we can treat all inputs and outputs as natural numbers
(say by thinking of them as bit-vectors).

With these observations, a program is just a function from natural numbers to natural
numbers.

Our proof will be based on diagonalization, a powerful proof method. Here is how
diagonalization works.

First, we start by assuming the negation of the conjecture: the halting problem is de-
cidable. So under this assumption, we have a program

h(i) = if Program f(i) is terminating then 1 else 0

Now imagine an infinite table where rows and columns are indexed by natural numbers
and cell r, ¢ contains F'r(c) where Fr is F(r) and F is some function that returns a program
(not necessarily f).

0 1 2
FO(0) FO(1) Fo(2)
F1(0) F1(1) F1(2)
F2(0) F2(1) F2(2)

N = O

Next, we derive a contradiction by defining a table like the one above and showing that
a program that should be in the table is not.

Let g(0),9(1),9(2),... be the list of terminating program indices in order. Here is a more
rigorous definition.

g(0) = smallest i such that f(i) is terminating.
g(n+1) = smallest i > g(n) such that f(i) is terminating.

Notice that this is well defined because there are an infinite number of terminating
programs! Notice also that since h is decidable, g is a computable, terminating function, so
for some i we have that f(i) = g.

In the table we will use in our proof, Fr = f(g(r)).

So, every terminating function appears somewhere in the table and the table tells us
what every terminating function returns on ewvery possible input.

Now, we are ready for our contradiction. We will define d so that it is a terminating
program (and so should be in the table), but it also differs along the diagonal, i.e., it differs
with every program in our table on at least one input.

Definitions and Termination 105

d(n) = Fn(n) + 1

That is, to determine d(n), compute g(n), which gives us the n'" terminating program.
Then run that program on n and add 1 to the result. Notice that d is a terminating program!
(Because g(n) is the index of a terminating program, f(g(n)) terminates on all inputs.)

Now, since d is a terminating program there is some k for which Fk = d. But what is
d(k)? Well it should be Fk(k) (since Fk = d), but according to the definition of d, it is
Fk(k) + 1, a contradiction.

0 1 2
0 FO0(0) FO(1) FO(2) ... d(0) !'= Fo(0)
1 F1(0) F1(1) F1(2) ... d@ '= F1(D
2 F2(0) F2(1) F2(2) ... d(2) 1= F2(2)

d(n) !'= Fn(n)

Wait, we derived false. And, we used Fk(k) = Fk(k)+1, which is exactly the function we
showed leads to inconsistency in ACL2s when motivating the need for termination analysis!
So, is false a theorem? Of course not. What we showed is that if we assume that termination
is decidable, then we can prove false. So, termination is not decidable. This is a proof by
contradiction, a key proof technique.

This is also a proof by diagonalization, another key proof technique introduced by Cantor
in the late 1800’s, where he used it to show that there is a infinite tower of infinities.
Diagonalization is a powerful proof technique that you will see more of when you study the
theory of computation.

Exercise 5.7 How would you write a program that checks if other programs terminate? We
just proved that there is no decision procedure for termination, so your program will return
“yes”, indicating that the input program always terminates, “no”, indicating that the input
program fails to terminate on at least one input, or “unknown”, indicating that your program
cannot determine whether the input program is terminating. A really simple solution is to
always return “unknown.” The goal is to write a program that returns as few “unknown’s

as possible.

Given the undecidability proof in this section, we know that there are terminating func-
tions for which ACL2s (or any other termination analysis engine) will fail to prove termina-
tion. However, we expect that for almost all of the programs we ask you to write in logic
mode, ACL2s will be able to prove termination automatically. If not, send email and we
will help you. That is not to say that it is hard to come up with simple functions whose
termination status is unknown. Consider the following well-known “Collatz” function. Even
after extensive effort, no one has been able to determine if it terminates or not.

(definec collatz (n :pos) :pos
(cond ((equal n 1) n)
((evenp n) (collatz (/ n 2)))
(t (collatz (+ 1 (x 3 n))))))

106 Reasoning About Programs

5.5 Exercises

For each function below, you have to check if its definition is admissible, i.e., it satisfies the
definitional principle.
If the function does satisfy the definitional principle then:

1. Provide a measure that can be used to show termination.
2. Use the measure to prove termination.
3. Explain in English why the contract theorem holds.

4. Explain in English why the body contracts hold.

If the function does not satisfy the definitional principle then identify each of the 6
conditions above that are violated.

Exercise 5.8

(definec f (x :tl y :nat) :tl
(cond ((equal y 0) nil)
((endp x) (list y))
(t (£ (cons y x) (- y 1))

Exercise 5.9 Dead code example

(definec f (x :nat y :nat) :int
(cond ((equal x 0) 1)
(kx0) (£ -1 -1))
t E1E Ex1D)

Notice that the second case of the cond above will never happen. Below are some
generative recursion examples.

Exercise 5.10

(definec f (x :int y :nat) :int
(cond ((equal x 0) 1)
(kx0) (f (+1y) (xxx)))
t 1 dE Ex1D YN

Exercise 5.11

(definec f (x :tl y :int) :nat
(cond ((endp x) y)
(t (+ 1 (£ (rest x) YN

Exercise 5.12

(definec f (x :tl y :int) :nat
(cond ((endp x) y)
(t (£ (rest x) (+ 1 y¥)N))

Definitions and Termination

107

Exercise 5.13

(definec f (x :tl y :int) :tl
(cond ((equal y 0) x)
(t (f (rest x) (- y 1))

Exercise 5.14

(definec f (x :nat) :int
(cond ((equal x 0) 1)
(< x0) (£ -1))

t (+1 & Gy 1NN

Exercise 5.15

(definec f (x :tl y :int) :nat
(cond ((and (endp x) (equal y 0))

0)
((and (endp x) (< y 0))
+1 E x +1y))))
((endp x)
+1E x y 1))
(t
(+ 1 (£ (rest x) ¥)))))

Exercise 5.16

(definec f (x :rational) :rational
(if (< x 0)
(f (+ x 1/2))
x))

Exercise 5.17

(definec f (x :rational) :nat
(cond ((> x 0) (f (- x 3/2)))
(k x 0) (f (x x -1)))
(t x)))

Exercise 5.18

(definec f (x :rational) :nat
(cond ((> x 0) (f (- x3/2)))
(< x 0) (f 180))
(t x)))

Exercise 5.19

(definec f (x :tl y :rational) :nat
(cond (> y 0) (fx (-y 1))
((consp x) (f (rest x) (+y 1))
(y0) (f (List y) (x y -1)))
t N

108

Reasoning About Programs

Exercise 5.20

(definec f (x :tl y :nat) :nat
(if (endp x)
(if (equal y 0)
0
1 Ex Cy D)
(+ 1 (£ (rest x) y))))

Exercise 5.21

(definec fib (n :nat) :nat
(if (< n 2)
n
(+ (fib (- n 1))
(fib (- n 2)))))

Exercise 5.22

(definec f (x :int y :int) :nat
(cond ((kxy) (+1 (f (+ x1) yv))
(Cxy) (+1 (E x (+y 1))
(t 0)))

Exercise 5.23

(definec f (n :nat) :nat
(cond ((<=mn 1) n)
((even n) (f (/ n 2)))
t (£ (+n DN

Exercise 5.24

(definec f (n :nat) :nat
(cond ((<=n 1) n)
((evenp n) (£ (/ n 2)))
(t (£ (+ (x 21n) 1)))))

Exercise 5.25

(definec e3 (x :nat y :pos) :nat
(cond ((equal x 0) x)
((equal y 1) y)
(> xy) (e3y x))
(t (e3x (-y DM

Exercise 5.26

(definec foo (x :nat 1 :tl a :all) :all

:timeout 300
(cond ((endp 1) a)

Definitions and Termination 109

((equal x 0) 1)

((oddp x) (foo (- x 1) 1 a))

((> x (Qen 1)) (foo (/ x 2) 1 x))
(t (foo x (rest 1) (first 1)))))

Exercise 5.27

(definec app-acc (x :tl y :tl acc :tl) :tl
(cond ((and (endp x) (endp y)) acc)
((endp x) (app-acc x (rest y) (cons (first y) acc)))
((endp y) (app-acc (rest x) y (cons (first x) acc)))
(t (app-acc x nil (app-acc nil y acc)))))

Exercise 5.28

(definec app-swap (x :tl y :tl acc :tl) :tl
(cond ((and (endp x) (endp y)) acc)
((endp x) (app-swap x (rest y) (cons (first y) acc)))
((endp y) (app-swap y x acc))
(t (app-swap x nil (app-swap acc nil y)))))

Exercise 5.29

(definec f (n :all) :all
(cond ((or (not (integerp n))
(<=mn 1)) 0)
((integerp (+ 1/2 (/ n 2))) (f (+ n 1)))
t +1E ¢ n2)))))N

Exercise 5.30 This is hard.

(defdata if-expr (oneof symbol (list ’if if-expr if-expr if-expr)))
(defunc if-flat (x)
:input-contract (if-exprp x)
:output-contract (if-exprp (if-flat x))
(if (symbolp x)
X
(let ((test (second x))
(true-branch (third x))
(false-branch (fourth x)))
(if (symbolp test)
(list ’if test (if-flat true-branch) (if-flat false-branch))
(if-flat (list ’if (second test)
(list ’if (third test) true-branch false-branch)
(1ist ’if (fourth test) true-branch false-branch)))))))

110 Reasoning About Programs

Exercise 5.31 This is hard.

(defunc f (flgwr zs xy ab zs)
:input-contract
(and (integerp flg) (integerp w)
(integerp r) (integerp z)
(integerp s) (integerp x)
(integerp y) (integerp a)
(integerp b) (integerp zs)
(not (equal r 0)))
:output-contract (booleanp (f flgwr z s x y a b zs))
(cond ((equal flg 1)
Gf (> z 0)
f2wrzOrwOO zs)
(equal w (expt r zs))))
((equal flg 2)
GHf > x 0)
(f3wrzsxyys zs)
(f1sr(-2z1) 00000 zs)))
(t (if (> a 0)
f3wrzsxy(-al (+b1l) zs)
f2wrzb (-x1) y00zs)))))

Exercise 5.32 This brings up interesting questions and is hard.

(definec ack (n :nat m :nat) :pos
(cond ((equal n 0) (+ m 1))
((equal m 0) (ack (- n 1) 1))
(t (ack (- n 1) (ack n (- m 1))))))

Exercise 5.33 This brings up interesting questions and is hard.

(definec m (x :int) :nat
(if (< 100 x)
(- x 10)
m @ (+ x 1))

