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Exam statistics
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TRACE evaluations

• Surveys are anonymous
• Please respond to the survey!
• Surveys close on Dec 13
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Homework 12

• This is an INDIVIDUAL (not group) homework
• Each student submits a separate answer
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Outline

• Invariants 
• Reasoning about imperative code
• The invariant game
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Invariants
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Invariants: reminder

• Consider this toy program:
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k := 0 ; // assign 0 to k

// say “I love you” ten times:
while (k < 10) {

printf(“I love you\n”) ;
k++ ;

}

what condition is true about k here?

what about here?

and here?



Invariants: reminder
• What is an invariant?

 A property that is always satisfied in all executions of 
the program, at a certain location in the program.

• E.g.:
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k := 0 ; // assign 0 to k
// k=0 is an invariant here

// say “I love you” ten times:
while (k < 10) {
// k<10 is an invariant here
// 0<=k<10 is another (stronger) invariant
printf(“I love you\n”) ;
k++ ;
// k<=10 is invariant here
assert(k<=10);  // assertion statement

}



Invariants: notation
• We use {Ix: cond} to state that condition 
cond is invariant at a certain place in the program.
 Ix is just a label for the invariant

• E.g.:
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k := 0 ; // assign 0 to k
{I1: k=0}

// say “I love you” ten times:
while (k < 10) {
{I2: k<10}
{I3: 0<=k<10}
printf(“I love you\n”) ;
k++ ;
{I4: k<=10}

}



Inductive invariants
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Inductive invariants (also called loop invariants)

• A property I is an inductive invariant iff:
1. I is an invariant.
2. I is inductive: if I holds before the loop, then I will 

also hold after the loop. 

• E.g.:
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k := 0 ; // assign 0 to k

// say “I love you” ten times:
while {I: k>=0} (k < 10) {
printf(“I love you\n”) ;
k++ ;

}



Inductive invariants

• Is this an inductive invariant?

• No: it is inductive, but it is not an invariant.
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k := 0 ; // assign 0 to k

// say “I love you” ten times:
while {I: k>20} (k < 10) {
printf(“I love you\n”) ;
k++ ;

}



Inductive invariants

• Is this an inductive invariant?

• No: if k=9 before the loop, it will be k=10 after the 
loop.
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k := 0 ; // assign 0 to k

// say “I love you” ten times:
while {I: k<10} (k < 10) {
printf(“I love you\n”) ;
k++ ;

}



Inductive invariants

• Is this an inductive invariant?

• Yes: if k=10 before the loop, then the loop is not 
entered, so k will still be 10 after the loop.
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k := 0 ; // assign 0 to k

// say “I love you” ten times:
while {I: k<=10} (k < 10) {
printf(“I love you\n”) ;
k++ ;

}



Inductive invariants
• Is this an inductive invariant?

• No: 
 It is an invariant – why?
 It is not inductive – why?

• Because if k=1 before the loop, then k=-2 after the loop.
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k := 3 ;

while {I: k>0} (k < 10) {
k := 3*k - 5 ;

}



Proving (or disproving) inductiveness

• We can use any technique that we learned!

• Proof obligation:
 False
 Counterexample: 
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k := 3 ;

while {I: k>0} (k < 10) {
k := 3*k - 5 ;

}

(integerp k) & k>0 => 3*k-5>0

k=1, k>0, 3*k-5=3-5=-2<0



Proving (or disproving) inductiveness

• We can use any technique that we learned!

• Proof obligation:
 True 
 Can be shown using induction on natural numbers
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k := 3 ;

while {I: k>=3} (k < 10) {
k := 3*k - 5 ;

}

(integerp k) & k>=3 => 3*k-5>=3



Inductiveness is helpful for 
establishing invariants
• If we know that I is inductive, and we prove that I

holds the first time we arrive at the loop, then we 
know that I is an invariant!

• We don’t have to explore all reachable states of the 
program! (they might even be infinite!)
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k := 3 ;

while {I: k>=3} (k < 10) {
k := 3*k - 5 ;

}



Reasoning about imperative 
programs
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Example 
• To prove the guarantee G, 

we have to come up with an 
inductive invariant I such 
that 
I & (cnt>=m) => G

• (cnt>=m) is the negation of 
the loop condition (cnt < m).

• We include it because in
order to reach G, we have to
exit the loop.
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main(n, m: nat) 
{ var res, cnt: int;

res := 0;
cnt := 0;

while I (cnt < m)
{ print(n, m, cnt, res);
cnt := cnt+1;
res  := res+n;
I

}
print(n, m, cnt, res);
G

}



Example 
• To prove the guarantee G, 

we have to come up with an 
inductive invariant I such 
that 
I & (cnt>=m) => G

• (cnt>=m) is the negation of 
the loop condition (cnt < m).

• We include it because in
order to reach G, we have to
exit the loop.
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main(n, m: nat) 
{ var res, cnt: int;

res := 0;
cnt := 0;

while I (cnt < m)
{ print(n, m, cnt, res);
cnt := cnt+1;
res  := res+n;
I

}
print(n, m, cnt, res);
G

} What should I be for this G?

Answer: I: 0<=cnt<=m & res=cnt*n



The invariant game

• http://invgame.atwalter.com/

Tripakis Logic and Computation, Fall 2019 22



Next time

• Abstract data types and observational equivalence
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