
Logic and Computation – CS 2800
Fall 2019

Lecture 34
Reasoning about imperative programs

The invariant game

Stavros Tripakis

Exam statistics

Tripakis Logic and Computation, Fall 2019 2

TRACE evaluations

• Surveys are anonymous
• Please respond to the survey!
• Surveys close on Dec 13

Tripakis Logic and Computation, Fall 2019 3

Homework 12

• This is an INDIVIDUAL (not group) homework
• Each student submits a separate answer

Tripakis Logic and Computation, Fall 2019 4

Outline

• Invariants
• Reasoning about imperative code
• The invariant game

Tripakis Logic and Computation, Fall 2019 5

Invariants

Tripakis 6Logic and Computation, Fall 2019

Invariants: reminder

• Consider this toy program:

Tripakis Logic and Computation, Fall 2019 7

k := 0 ; // assign 0 to k

// say “I love you” ten times:
while (k < 10) {

printf(“I love you\n”) ;
k++ ;

}

what condition is true about k here?

what about here?

and here?

Invariants: reminder
• What is an invariant?

 A property that is always satisfied in all executions of
the program, at a certain location in the program.

• E.g.:

Tripakis Logic and Computation, Fall 2019 8

k := 0 ; // assign 0 to k
// k=0 is an invariant here

// say “I love you” ten times:
while (k < 10) {
// k<10 is an invariant here
// 0<=k<10 is another (stronger) invariant
printf(“I love you\n”) ;
k++ ;
// k<=10 is invariant here
assert(k<=10); // assertion statement

}

Invariants: notation
• We use {Ix: cond} to state that condition
cond is invariant at a certain place in the program.
 Ix is just a label for the invariant

• E.g.:

Tripakis Logic and Computation, Fall 2019 9

k := 0 ; // assign 0 to k
{I1: k=0}

// say “I love you” ten times:
while (k < 10) {
{I2: k<10}
{I3: 0<=k<10}
printf(“I love you\n”) ;
k++ ;
{I4: k<=10}

}

Inductive invariants

Tripakis 10Logic and Computation, Fall 2019

Inductive invariants (also called loop invariants)

• A property I is an inductive invariant iff:
1. I is an invariant.
2. I is inductive: if I holds before the loop, then I will

also hold after the loop.

• E.g.:

Tripakis Logic and Computation, Fall 2019 11

k := 0 ; // assign 0 to k

// say “I love you” ten times:
while {I: k>=0} (k < 10) {
printf(“I love you\n”) ;
k++ ;

}

Inductive invariants

• Is this an inductive invariant?

• No: it is inductive, but it is not an invariant.

Tripakis Logic and Computation, Fall 2019 12

k := 0 ; // assign 0 to k

// say “I love you” ten times:
while {I: k>20} (k < 10) {
printf(“I love you\n”) ;
k++ ;

}

Inductive invariants

• Is this an inductive invariant?

• No: if k=9 before the loop, it will be k=10 after the
loop.

Tripakis Logic and Computation, Fall 2019 13

k := 0 ; // assign 0 to k

// say “I love you” ten times:
while {I: k<10} (k < 10) {
printf(“I love you\n”) ;
k++ ;

}

Inductive invariants

• Is this an inductive invariant?

• Yes: if k=10 before the loop, then the loop is not
entered, so k will still be 10 after the loop.

Tripakis Logic and Computation, Fall 2019 14

k := 0 ; // assign 0 to k

// say “I love you” ten times:
while {I: k<=10} (k < 10) {
printf(“I love you\n”) ;
k++ ;

}

Inductive invariants
• Is this an inductive invariant?

• No:
 It is an invariant – why?
 It is not inductive – why?

• Because if k=1 before the loop, then k=-2 after the loop.

Tripakis Logic and Computation, Fall 2019 15

k := 3 ;

while {I: k>0} (k < 10) {
k := 3*k - 5 ;

}

Proving (or disproving) inductiveness

• We can use any technique that we learned!

• Proof obligation:
 False
 Counterexample:

Tripakis Logic and Computation, Fall 2019 16

k := 3 ;

while {I: k>0} (k < 10) {
k := 3*k - 5 ;

}

(integerp k) & k>0 => 3*k-5>0

k=1, k>0, 3*k-5=3-5=-2<0

Proving (or disproving) inductiveness

• We can use any technique that we learned!

• Proof obligation:
 True
 Can be shown using induction on natural numbers

Tripakis Logic and Computation, Fall 2019 17

k := 3 ;

while {I: k>=3} (k < 10) {
k := 3*k - 5 ;

}

(integerp k) & k>=3 => 3*k-5>=3

Inductiveness is helpful for
establishing invariants
• If we know that I is inductive, and we prove that I

holds the first time we arrive at the loop, then we
know that I is an invariant!

• We don’t have to explore all reachable states of the
program! (they might even be infinite!)

Tripakis Logic and Computation, Fall 2019 18

k := 3 ;

while {I: k>=3} (k < 10) {
k := 3*k - 5 ;

}

Reasoning about imperative
programs

Tripakis 19Logic and Computation, Fall 2019

Example
• To prove the guarantee G,

we have to come up with an
inductive invariant I such
that
I & (cnt>=m) => G

• (cnt>=m) is the negation of
the loop condition (cnt < m).

• We include it because in
order to reach G, we have to
exit the loop.

Tripakis Logic and Computation, Fall 2019 20

main(n, m: nat)
{ var res, cnt: int;

res := 0;
cnt := 0;

while I (cnt < m)
{ print(n, m, cnt, res);
cnt := cnt+1;
res := res+n;
I

}
print(n, m, cnt, res);
G

}

Example
• To prove the guarantee G,

we have to come up with an
inductive invariant I such
that
I & (cnt>=m) => G

• (cnt>=m) is the negation of
the loop condition (cnt < m).

• We include it because in
order to reach G, we have to
exit the loop.

Tripakis Logic and Computation, Fall 2019 21

main(n, m: nat)
{ var res, cnt: int;

res := 0;
cnt := 0;

while I (cnt < m)
{ print(n, m, cnt, res);
cnt := cnt+1;
res := res+n;
I

}
print(n, m, cnt, res);
G

} What should I be for this G?

Answer: I: 0<=cnt<=m & res=cnt*n

The invariant game

• http://invgame.atwalter.com/

Tripakis Logic and Computation, Fall 2019 22

Next time

• Abstract data types and observational equivalence

Tripakis Logic and Computation, Fall 2019 23

