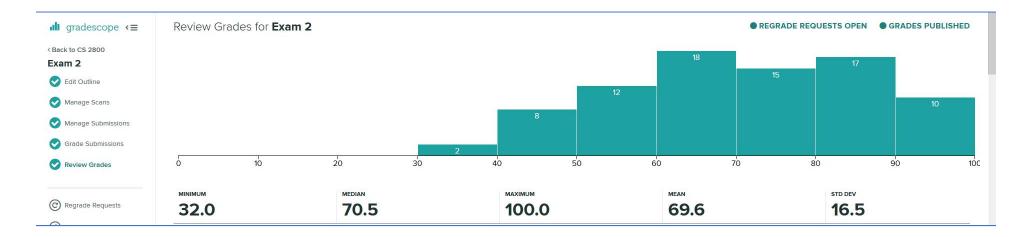
Logic and Computation – CS 2800 Fall 2019

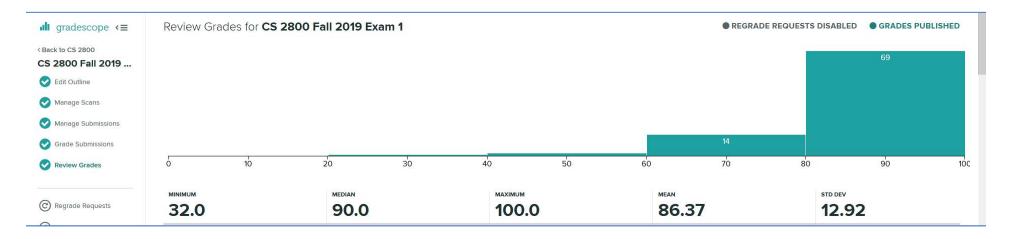
Lecture 34 Reasoning about imperative programs The invariant game

Stavros Tripakis

Northeastern University Khoury College of Computer Sciences

Exam statistics





TRACE evaluations

- Surveys are anonymous
- Please respond to the survey!
- Surveys close on Dec 13

Homework 12

- This is an INDIVIDUAL (not group) homework
- Each student submits a separate answer

Outline

- Invariants
- Reasoning about imperative code
- The invariant game

Invariants

Invariants: reminder

• Consider this toy program:

}

```
k := 0 ; // assign 0 to k
what condition is true about k here?
```

```
// say "I love you" ten times:
while (k < 10) {
    what about here?
</pre>
```

```
printf("I love you\n") ;
k++ ;
and here?
```

Invariants: reminder

- What is an invariant?
 - A property that is always satisfied in all executions of the program, at a certain location in the program.

```
• E.g.:
```

```
k := 0 ; // assign 0 to k
// k=0 is an invariant here
// say "I love you" ten times:
while (k < 10) {
    // k<10 is an invariant here
    // 0<=k<10 is another (stronger) invariant
    printf("I love you\n") ;
    k++ ;
    // k<=10 is invariant here
    assert(k<=10); // assertion statement
}</pre>
```

Invariants: notation

- We use { Ix: cond } to state that condition cond is invariant at a certain place in the program.
 - Ix is just a label for the invariant

```
• E.g.: k := 0 ; // assign 0 to k
{I1: k=0}
// say "I love you" ten times:
while (k < 10) {
    {I2: k<10}
    {I3: 0<=k<10}
    printf("I love you\n") ;
    k++ ;
    {I4: k<=10}
}</pre>
```

Inductive invariants (also called loop invariants)

- A property I is an inductive invariant iff:
 - 1. I is an invariant.
 - 2. I is inductive: if I holds before the loop, then I will also hold after the loop.

• E.g.:

```
k := 0 ; // assign 0 to k
// say "I love you" ten times:
while {I: k>=0} (k < 10) {
    printf("I love you\n") ;
    k++ ;
}</pre>
```

• Is this an inductive invariant?

```
k := 0 ; // assign 0 to k
// say "I love you" ten times:
while {I: k>20} (k < 10) {
    printf("I love you\n") ;
    k++ ;
}</pre>
```

• No: it **is** inductive, but it is **not** an invariant.

• Is this an inductive invariant?

```
k := 0 ; // assign 0 to k
// say "I love you" ten times:
while {I: k<10} (k < 10) {
    printf("I love you\n") ;
    k++ ;
}</pre>
```

• No: if k=9 before the loop, it will be k=10 after the loop.

• Is this an inductive invariant?

```
k := 0 ; // assign 0 to k
// say "I love you" ten times:
while {I: k<=10} (k < 10) {
    printf("I love you\n") ;
    k++ ;
}</pre>
```

• Yes: if k=10 before the loop, then the loop is not entered, so k will still be 10 after the loop.

• Is this an inductive invariant?

```
k := 3 ;
while {I: k>0} (k < 10) {
    k := 3*k - 5 ;
}</pre>
```

- No:
 - It is an invariant why?
 - It is not inductive why?
 - Because if k=1 before the loop, then k=-2 after the loop.

Proving (or disproving) inductiveness

• We can use any technique that we learned!

```
k := 3 ;
while {I: k>0} (k < 10) {
    k := 3*k - 5 ;
}</pre>
```

- Proof obligation: (integerp k) & k>0 => 3*k-5>0
 - False
 - Counterexample: k=1, k>0, 3*k-5=3-5=-2<0

Proving (or disproving) inductiveness

• We can use any technique that we learned!

```
k := 3 ;
while {I: k>=3} (k < 10) {
    k := 3*k - 5 ;
}</pre>
```

- Proof obligation: (integerp k) & k>=3 => 3*k-5>=3
 - True
 - Can be shown using induction on natural numbers

Inductiveness is helpful for establishing invariants

 If we know that I is inductive, and we prove that I holds the first time we arrive at the loop, then we know that I is an invariant!

```
k := 3 ;
while {I: k>=3} (k < 10) {
    k := 3*k - 5;
}</pre>
```

 We don't have to explore all reachable states of the program! (they might even be infinite!)

Reasoning about imperative programs

Example

 To prove the guarantee G, we have to come up with an inductive invariant I such that

I & (cnt>=m) => G

- (cnt>=m) is the negation of the loop condition (cnt < m).
- We include it because in order to reach G, we have to exit the loop.

```
main(n, m: nat)
{ var res, cnt: int;
  res := 0;
  cnt := 0;
  while [] (cnt < m)
  { print(n, m, cnt, res);
    cnt := cnt+1;
    res := res+n;
    print(n, m, cnt, res);
  [[G]]
```

 To prove the guarantee G, we have to come up with an inductive invariant I such that

I & (cnt>=m) => G

- (cnt>=m) is the negation of the loop condition (cnt < m).
- We include it because in order to reach G, we have to exit the loop.

```
main(n, m: nat)
{ var res, cnt: int;
  res := 0;
  cnt := 0;
  while [] (cnt < m)
  { print(n, m, cnt, res);
    cnt := cnt+1;
    res := res+n;
    print(n, m, cnt, res);
  [[G]]
      What should I be for this G?
```

The invariant game

<u>http://invgame.atwalter.com/</u>

Next time

• Abstract data types and observational equivalence