
Logic and Computation – CS 2800
Fall 2019

Lecture 29
Induction continued

Stavros Tripakis

A quick lesson in political science

Tripakis Logic and Computation, Fall 2019 2

Political systems in a nutshell

• Anarchy: rule of none / gangs
 Cannot protect human rights

• Monarchy: rule of one
 Cannot protect human rights

• Oligarchy: rule of a few
 Cannot protect human rights

• Democracy: rule of the majority
 Can it protect human rights?

Tripakis Logic and Computation, Fall 2019 3

The exam saga

• Dec 2 is not possible: Registrar said no

• Registrar proposes Friday December 13th , 1-3pm in
Shillman Hall 335

Tripakis Logic and Computation, Fall 2019 4

Outline

• Induction continued
• More examples, sorting a list
• Induction like a pro

Tripakis Logic and Computation, Fall 2019 5

Insertion sort functions

Tripakis Logic and Computation, Fall 2019 6

(defdata lor (listof rational))

(definec insert (e :rational L :lor) :lor
(cond ((endp L) (list e))

((<= e (car L)) (cons e L))
(t (cons (car L) (insert e (cdr L))))))

(definec isort (L :lor) :lor
(if (endp L)

L
(insert (car L) (isort (cdr L)))))

(definec orderedp (L :lor) :bool
(or (endp (cdr L))

(and (<= (car L) (second L))
(orderedp (cdr L)))))

Quiz

• Do we need induction to prove the above lemmas?
A. Both lemmas require induction
B. Lemma3 requires induction but Lemma2 does not
C. Lemma2 requires induction but Lemma3 does not
D. None of them requires induction

Tripakis Logic and Computation, Fall 2019 7

Lemma2: (lorp L) & (rationalp e)
=> (not (endp (insert e L)))

Lemma3: (lorp L) & (rationalp e) & (orderedp L)
& (not (endp L)) & (e > (car L))

=>
(car L) < (car (insert e (cdr L)))

Quiz
• A function mysort which satisfies the claim below

is a correct sorting function: YES/NO

Tripakis Logic and Computation, Fall 2019 8

(defthm mysort-ordered
(implies (lorp L)

(orderedp (mysort L))))

More proofs by induction

Tripakis Logic and Computation, Fall 2019 9

Claim 1

• A couple of lectures ago we started proving this:

• Let’s complete the proof, doing PO3:

Tripakis Logic and Computation, Fall 2019 10

(tlp a) & (tlp b) & (tlp c) =>
(aapp (aapp a b) c) = (aapp a (aapp b c))

PO1: (not (tlp a)) => Phi
PO2: (tlp a) & (endp a) => Phi
PO3: (tlp a) & (not (endp a)) & Phi|((a (cdr a))) => Phi

(definec aapp (x :tl y :tl) :tl
(if (endp x)

y
(cons (car x) (aapp (cdr x) y))))

Claim 2

• What if we tried to prove this?

• First we must do contract completion:

• Can we prove it using just equational reasoning?
• No: length of list x is not bounded.
• Can we prove it using induction?
• Let’s try induction on true list x.

Tripakis Logic and Computation, Fall 2019 11

(aapp (aapp x x) x) = (aapp x (aapp x x))

(tlp x) =>
(aapp (aapp x x) x) = (aapp x (aapp x x))

(definec aapp (x :tl y :tl) :tl
(if (endp x)

y
(cons (car x) (aapp (cdr x) y))))

Claim 2

• So how can we prove this?

• Simply by instantiating the previous theorem:

• Generalization!

Tripakis Logic and Computation, Fall 2019 12

(tlp x) =>
(aapp (aapp x x) x) = (aapp x (aapp x x))

(tlp a) & (tlp b) & (tlp c) =>
(aapp (aapp a b) c) = (aapp a (aapp b c))

(definec aapp (x :tl y :tl) :tl
(if (endp x)

y
(cons (car x) (aapp (cdr x) y))))

Claim 3

• Which induction scheme to use?
• True lists!

Tripakis Logic and Computation, Fall 2019 13

(definec rrev (x :tl) :tl
(if (endp x)
nil
(aapp (rrev (rest x)) (list (first x)))))

Claim: (tlp x) => (rrev (rrev x)) = x

PO1: (not (tlp x)) => Phi
PO2: (tlp x) & (endp x) => Phi
PO3: (tlp x) & (not (endp x)) & Phi|((x (cdr x))) => Phi

Claim 3

• Proof obligations:

Tripakis Logic and Computation, Fall 2019 14

(definec rrev (x :tl) :tl
(if (endp x)
nil
(aapp (rrev (rest x)) (list (first x)))))

Claim: (tlp x) => (rrev (rrev x)) = x

PO1: (not (tlp x)) => ((tlp x) => (rrev (rrev x)) = x)
PO2: (tlp x) & (endp x) => ((tlp x) => (rrev (rrev x))=x)
PO3: (tlp x) & (not (endp x)) &

((tlp (cdr x)) => (rrev (rrev (cdr x))) = (cdr x))
=> ((tlp x) => (rrev (rrev x)) = x)

Claim 3
• For proof obligation 3, some lemmas may be

useful:

• Strategy for lemmas:
1. Come up with the lemma during the proof
2. Use the lemma to complete the proof: this ensures that

the lemma is actually useful (i.e., allows us to complete
the proof)

3. Prove the lemma.

Tripakis Logic and Computation, Fall 2019 15

Lemma 1: (tlp a) & (tlp b)
=> (rrev (aapp a b)) = (aapp (rrev b) (rrev a))

Lemma 2: (rrev (list x)) = (list x)
Lemma 3: (tlp x) & (not (endp x))

=> (aapp (list (car x)) (cdr x)) = x

Prove these lemmas at home!

Claim 4

• How to prove this?
• Induction? On what?
• Let’s try true lists.

Tripakis Logic and Computation, Fall 2019 16

(definec in (a :all X :tl) :bool
(cond ((endp x) nil)

((equal a (car X)) t)
(t (in a (cdr X)))))

(definec subset (x :tl y :tl) :bool
(cond ((endp x) t)

((in (car x) y) (subset (cdr x) y))
(t nil)))

Claim: (tlp x) => (subset x x)

Do this at home!

Claim 4

Tripakis Logic and Computation, Fall 2019 17

C1. (tlp x)
C2. (not (endp x))
C3. (tlp (cdr x)) => (subset (cdr x) (cdr x))
D1. (tlp (cdr x)) { C1, C2 }
D2. (subset (cdr x) (cdr x)) { C3, C1, MP }
Proof:
(subset x x) = {def subset, C2 }
(in (car x) x) & (subset (cdr x) x) = { L1 }
(subset (cdr x) x) = ???

(definec in (a :all X :tl) :bool
(cond ((endp x) nil)

((equal a (car X)) t)
(t (in a (cdr X)))))

(definec subset (x :tl y :tl) :bool
(cond ((endp x) t)

((in (car x) y) (subset (cdr x) y))
(t nil)))

Lemma L1:
(tlp x) & (not (endp x)) => (in (car x) x)

Generalization!
But which one?

Claim 4

• We could try these:

Tripakis Logic and Computation, Fall 2019 18

Generalized claim attempt 1:
(tlp x) & (not (endp x)) => (subset (cdr x) x)

Generalized claim attempt 2:
(tlp x) & (subset x x) => (subset x (cons a x))

...

They won’t work!

(definec in (a :all X :tl) :bool
(cond ((endp x) nil)

((equal a (car X)) t)
(t (in a (cdr X)))))

(definec subset (x :tl y :tl) :bool
(cond ((endp x) t)

((in (car x) y) (subset (cdr x) y))
(t nil)))

Claim 4

• E.g., for the first claim, we will end up trying to
prove:

Tripakis Logic and Computation, Fall 2019 19

Generalized claim attempt 1:
(tlp x) & (not (endp x)) => (subset (cdr x) x)

...
IH: (subset (cdr (cdr x)) (cdr x))
...
Proof:
... (subset (cdr (cdr x)) x) ... ???

We need to distinguish
the two arguments of
subset!

(definec in (a :all X :tl) :bool
(cond ((endp x) nil)

((equal a (car X)) t)
(t (in a (cdr X)))))

(definec subset (x :tl y :tl) :bool
(cond ((endp x) t)

((in (car x) y) (subset (cdr x) y))
(t nil)))

Claim 4

• The art of generalization:

Tripakis Logic and Computation, Fall 2019 20

Generalized claim attempt 3 (the right one):

(tlp x) & (tlp y) & (subset x y)
=> (subset x (cons a y))

Try these three claims at home in ACL2s, see what
you get.

(definec in (a :all X :tl) :bool
(cond ((endp x) nil)

((equal a (car X)) t)
(t (in a (cdr X)))))

(definec subset (x :tl y :tl) :bool
(cond ((endp x) t)

((in (car x) y) (subset (cdr x) y))
(t nil)))

Claim 4

• Let’s try to prove this claim:

• Induction: which induction scheme?
• True list x

Tripakis Logic and Computation, Fall 2019 21

Generalized claim attempt 3 (the right one):

(tlp x) & (tlp y) & (subset x y)
=> (subset x (cons a y))

(definec in (a :all X :tl) :bool
(cond ((endp x) nil)

((equal a (car X)) t)
(t (in a (cdr X)))))

(definec subset (x :tl y :tl) :bool
(cond ((endp x) t)

((in (car x) y) (subset (cdr x) y))
(t nil)))

Claim 4:
proof

Tripakis Logic and Computation, Fall 2019 22

C1. (tlp x) C2. (tlp y) C3. (subset x y)
C4. (not (endp x)) ...
Dnnn. (subset (cdr x) (cons a y)) { ... }
Dmmm. (in (car x) y) { ... }

Proof:
(subset x (cons a y)) = { def subset, C4 }
(in (car x) (cons a y)) & (subset (cdr x) (cons a y))
= { Dnnn }
(in (car x) (cons a y)) = { def in, cons axioms }
(car x) = a or (in (car x) y)
= { Dmmm, PL }
t

(definec in (a :all X :tl) :bool
(cond ((endp x) nil)

((equal a (car X)) t)
(t (in a (cdr X)))))

(definec subset (x :tl y :tl) :bool
(cond ((endp x) t)

((in (car x) y) (subset (cdr x) y))
(t nil)))

QED!

Claim 5:

• Subset is transitive:

Tripakis Logic and Computation, Fall 2019 23

(defthm transitive
(implies (and (tlp x) (tlp y) (tlp z)

(subset x y) (subset y z))
(subset x z)))

(definec in (a :all X :tl) :bool
(cond ((endp x) nil)

((equal a (car X)) t)
(t (in a (cdr X)))))

(definec subset (x :tl y :tl) :bool
(cond ((endp x) t)

((in (car x) y) (subset (cdr x) y))
(t nil)))

Do this at home!

Next time

• Induction continued

Tripakis Logic and Computation, Fall 2019 24

