
Logic and Computation – CS 2800
Fall 2019

Lecture 29
Induction continued

Stavros Tripakis



A quick lesson in political science
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Political systems in a nutshell

• Anarchy: rule of none / gangs
 Cannot protect human rights

• Monarchy: rule of one
 Cannot protect human rights

• Oligarchy: rule of a few
 Cannot protect human rights

• Democracy: rule of the majority
 Can it protect human rights?
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The exam saga

• Dec 2 is not possible: Registrar said no

• Registrar proposes Friday December 13th , 1-3pm in 
Shillman Hall 335
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Outline

• Induction continued
• More examples, sorting a list
• Induction like a pro
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Insertion sort functions
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(defdata lor (listof rational))

(definec insert (e :rational L :lor) :lor
(cond ((endp L) (list e))

((<= e (car L)) (cons e L))
(t (cons (car L) (insert e (cdr L))))))

(definec isort (L :lor) :lor
(if (endp L)

L
(insert (car L) (isort (cdr L)))))

(definec orderedp (L :lor) :bool
(or (endp (cdr L))

(and (<= (car L) (second L))
(orderedp (cdr L)))))



Quiz 

• Do we need induction to prove the above lemmas?
A. Both lemmas require induction
B. Lemma3 requires induction but Lemma2 does not
C. Lemma2 requires induction but Lemma3 does not
D. None of them requires induction
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Lemma2: (lorp L) & (rationalp e)
=> (not (endp (insert e L)))

Lemma3: (lorp L) & (rationalp e) & (orderedp L) 
& (not (endp L)) & (e > (car L))

=>
(car L) < (car (insert e (cdr L)))



Quiz
• A function mysort which satisfies the claim below 

is a correct sorting function: YES/NO
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(defthm mysort-ordered
(implies (lorp L)

(orderedp (mysort L))))



More proofs by induction
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Claim 1

• A couple of lectures ago we started proving this:

• Let’s complete the proof, doing PO3:
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(tlp a) & (tlp b) & (tlp c) =>
(aapp (aapp a b) c) = (aapp a (aapp b c))

PO1: (not (tlp a)) => Phi
PO2: (tlp a) & (endp a) => Phi
PO3: (tlp a) & (not (endp a)) & Phi|((a (cdr a))) => Phi

(definec aapp (x :tl y :tl) :tl
(if (endp x)

y
(cons (car x) (aapp (cdr x) y))))



Claim 2

• What if we tried to prove this?

• First we must do contract completion:

• Can we prove it using just equational reasoning?
• No: length of list x is not bounded.
• Can we prove it using induction?
• Let’s try induction on true list x.
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(aapp (aapp x x) x) = (aapp x (aapp x x))

(tlp x) =>
(aapp (aapp x x) x) = (aapp x (aapp x x))

(definec aapp (x :tl y :tl) :tl
(if (endp x)

y
(cons (car x) (aapp (cdr x) y))))



Claim 2

• So how can we prove this?

• Simply by instantiating the previous theorem:

• Generalization!
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(tlp x) =>
(aapp (aapp x x) x) = (aapp x (aapp x x))

(tlp a) & (tlp b) & (tlp c) =>
(aapp (aapp a b) c) = (aapp a (aapp b c))

(definec aapp (x :tl y :tl) :tl
(if (endp x)

y
(cons (car x) (aapp (cdr x) y))))



Claim 3

• Which induction scheme to use?
• True lists!
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(definec rrev (x :tl) :tl
(if (endp x)
nil
(aapp (rrev (rest x)) (list (first x)))))

Claim: (tlp x) => (rrev (rrev x)) = x

PO1: (not (tlp x)) => Phi
PO2: (tlp x) & (endp x) => Phi
PO3: (tlp x) & (not (endp x)) & Phi|((x (cdr x))) => Phi



Claim 3

• Proof obligations:
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(definec rrev (x :tl) :tl
(if (endp x)
nil
(aapp (rrev (rest x)) (list (first x)))))

Claim: (tlp x) => (rrev (rrev x)) = x

PO1: (not (tlp x)) => ((tlp x) => (rrev (rrev x)) = x)
PO2: (tlp x) & (endp x) => ((tlp x) => (rrev (rrev x))=x)
PO3: (tlp x) & (not (endp x)) & 

((tlp (cdr x)) => (rrev (rrev (cdr x))) = (cdr x))
=> ((tlp x) => (rrev (rrev x)) = x)



Claim 3
• For proof obligation 3, some lemmas may be 

useful:

• Strategy for lemmas:
1. Come up with the lemma during the proof
2. Use the lemma to complete the proof: this ensures that 

the lemma is actually useful (i.e., allows us to complete 
the proof)

3. Prove the lemma.
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Lemma 1: (tlp a) & (tlp b) 
=> (rrev (aapp a b)) = (aapp (rrev b) (rrev a))

Lemma 2: (rrev (list x)) = (list x)
Lemma 3: (tlp x) & (not (endp x))

=> (aapp (list (car x)) (cdr x)) = x

Prove these lemmas at home!



Claim 4

• How to prove this?
• Induction? On what?
• Let’s try true lists.
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(definec in (a :all X :tl) :bool
(cond ((endp x) nil)

((equal a (car X)) t)
(t (in a (cdr X)))))

(definec subset (x :tl y :tl) :bool
(cond ((endp x) t)

((in (car x) y) (subset (cdr x) y))
(t nil)))

Claim: (tlp x) => (subset x x)

Do this at home!



Claim 4
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C1. (tlp x)
C2. (not (endp x))
C3. (tlp (cdr x)) => (subset (cdr x) (cdr x))
D1. (tlp (cdr x)) { C1, C2 }
D2. (subset (cdr x) (cdr x)) { C3, C1, MP }
Proof:
(subset x x) = {def subset, C2 }
(in (car x) x) & (subset (cdr x) x) = { L1 }
(subset (cdr x) x) = ???

(definec in (a :all X :tl) :bool
(cond ((endp x) nil)

((equal a (car X)) t)
(t (in a (cdr X)))))

(definec subset (x :tl y :tl) :bool
(cond ((endp x) t)

((in (car x) y) (subset (cdr x) y))
(t nil)))

Lemma L1:
(tlp x) & (not (endp x)) => (in (car x) x)

Generalization!
But which one?



Claim 4

• We could try these:
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Generalized claim attempt 1:
(tlp x) & (not (endp x)) => (subset (cdr x) x)

Generalized claim attempt 2:
(tlp x) & (subset x x) => (subset x (cons a x))

...

They won’t work!

(definec in (a :all X :tl) :bool
(cond ((endp x) nil)

((equal a (car X)) t)
(t (in a (cdr X)))))

(definec subset (x :tl y :tl) :bool
(cond ((endp x) t)

((in (car x) y) (subset (cdr x) y))
(t nil)))



Claim 4

• E.g., for the first claim, we will end up trying to 
prove:
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Generalized claim attempt 1:
(tlp x) & (not (endp x)) => (subset (cdr x) x)

...
IH: (subset (cdr (cdr x)) (cdr x))
...
Proof:
... (subset (cdr (cdr x)) x) ...   ???

We need to distinguish 
the two arguments of 
subset!

(definec in (a :all X :tl) :bool
(cond ((endp x) nil)

((equal a (car X)) t)
(t (in a (cdr X)))))

(definec subset (x :tl y :tl) :bool
(cond ((endp x) t)

((in (car x) y) (subset (cdr x) y))
(t nil)))



Claim 4

• The art of generalization:
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Generalized claim attempt 3 (the right one):

(tlp x) & (tlp y) & (subset x y) 
=> (subset x (cons a y))

Try these three claims at home in ACL2s, see what 
you get.

(definec in (a :all X :tl) :bool
(cond ((endp x) nil)

((equal a (car X)) t)
(t (in a (cdr X)))))

(definec subset (x :tl y :tl) :bool
(cond ((endp x) t)

((in (car x) y) (subset (cdr x) y))
(t nil)))



Claim 4

• Let’s try to prove this claim:

• Induction: which induction scheme?
• True list x
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Generalized claim attempt 3 (the right one):

(tlp x) & (tlp y) & (subset x y) 
=> (subset x (cons a y))

(definec in (a :all X :tl) :bool
(cond ((endp x) nil)

((equal a (car X)) t)
(t (in a (cdr X)))))

(definec subset (x :tl y :tl) :bool
(cond ((endp x) t)

((in (car x) y) (subset (cdr x) y))
(t nil)))



Claim 4:
proof

Tripakis Logic and Computation, Fall 2019 22

C1. (tlp x)   C2. (tlp y)   C3. (subset x y) 
C4. (not (endp x)) ...
Dnnn. (subset (cdr x) (cons a y)) { ... }
Dmmm. (in (car x) y) { ... }

Proof:
(subset x (cons a y)) = { def subset, C4 }
(in (car x) (cons a y)) & (subset (cdr x) (cons a y))
= { Dnnn }
(in (car x) (cons a y)) = { def in, cons axioms }
(car x) = a   or   (in (car x) y)
= { Dmmm, PL }
t

(definec in (a :all X :tl) :bool
(cond ((endp x) nil)

((equal a (car X)) t)
(t (in a (cdr X)))))

(definec subset (x :tl y :tl) :bool
(cond ((endp x) t)

((in (car x) y) (subset (cdr x) y))
(t nil)))

QED!



Claim 5:

• Subset is transitive:
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(defthm transitive
(implies (and (tlp x) (tlp y) (tlp z)

(subset x y) (subset y z))
(subset x z)))

(definec in (a :all X :tl) :bool
(cond ((endp x) nil)

((equal a (car X)) t)
(t (in a (cdr X)))))

(definec subset (x :tl y :tl) :bool
(cond ((endp x) t)

((in (car x) y) (subset (cdr x) y))
(t nil)))

Do this at home!



Next time

• Induction continued 
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