Logic and Computation - CS 2800 Fall 2019

Lecture 27
 Induction continued

Stavros Tripakis

Northeastern University Khoury College of
Computer Sciences

Outline

- Validity of induction
- More examples

Validity of induction

What induction really says

-What does this induction scheme really say?

```
PO1: (not (natp n)) => Phi
PO2: (natp n) & (equal n 0) => Phi
PO3: (natp n) & (not (equal n 0)) & Phi|((n (- n 1))) => Phi
```

- It says: "if PO1 is a theorem, and PO2 is theorem, and PO3 is a theorem, then Phi is a theorem".
- In first-order logic, we would write this as follows (assuming n is the only free variable in Phi):

$$
((\forall n: P O 1) \wedge(\forall n: P O 2) \wedge(\forall n: P 03)) \Rightarrow(\forall n: P h i)
$$

- Notice that the above is different from the following (the following does not hold!):

$$
\forall n:(P 01 \wedge P 02 \wedge P 03) \Rightarrow P h i
$$

Soundness and completeness

- Soundness: if I'm able to prove something, then that something is indeed true.
- Completeness: if something is true, then I'm able to prove it.
- Every induction scheme that admissible functions give rise to is sound, but not complete in general.
- Why not complete? E.g., in the last lecture we could not prove (aapp x nil) $=x$ using the induction scheme of aapp.

So why does induction work? (i.e., why is it sound?)

- Consider this induction scheme:

```
PO1: (not (natp n)) => Phi
PO2: (natp n) & (equal n 0) => Phi
PO3: (natp n) & (not (equal n 0)) & Phi|((n (- n 1))) => Phi
```

- Proof by contradiction:
- Suppose we have proved PO1,2,3, but Phi is not true.
- Then there must be some object in the ACL2s universe that makes Phi false: let that object be x.
- If x is not a nat, then we could not have proved PO1 - why? So x must be a nat.
- If $x=0$ then we could not have proved PO2 - why? So $x>0$.
- Let x be the smallest nat which violates Phi. Then $x-1$ satisfies Phi, meaning that Phi|((n (-x 1))) holds. But then all assumptions of PO3 hold, so Phi must also hold, otherwise we could not have proved PO3. Contradiction.

But what about other induction schemes?

- E.g.:

```
PO1: (not (tlp x)) => Phi
PO2: (tlp x) & (endp x) => Phi
PO3: (tlp x) & (not (endp x)) & Phi|((x (cdr x))) => Phi
```

- Again, proof by contradiction:
- Suppose we have proved PO1,2,3, but Phi is not true.
- Then there must be some object in the ACL2s universe that makes Phi false: let that object be x.
- If x is not a true list, then we could not have proved PO1. So x must be a true list.
- If $x=$ nil then we could not have proved PO2. So $x \neq n i l$.
- Let x be a "shortest true list" which violates Phi, meaning that (cdr x) satisfies Phi. Therefore, Phi| ((x (cdr x))) holds. But then all assumptions of PO3 hold, so Phi must also hold, otherwise we could not have proved PO3. Contradiction.

More examples

Example 3

- What induction scheme does the Fibonacci function give rise to?

```
(definec-no-test fib (n :nat) :nat
    (if (< n 2)
        n
    (+ (fib (- n 1))
        (fib (- n 2)))))
```


Example 3

- What induction schemes does the Fibonacci function give rise to?

```
(definec-no-test fib (n :nat) :nat
    (if (< n 2)
        n
        (+ (fib (- n 1))
        (fib (- n 2)))))
```

```
PO1. (not (natp n)) => Phi
PO2. (natp n) & (< n 2) => Phi
PO3. (natp n) & (>= n 2)
    & Phi|((n (- n 1)))
    & Phi|((n (- n 2)))
        => Phi
```


Playing the game in reverse: example 1

- What function gives rise to this induction scheme?

```
PO1: (not (natp n)) => Phi We also call this the induction
PO2: (natp n) & (equal n 0) => Phi scheme of natural numbers
PO3: (natp n) & (not (equal n 0)) & Phi|((n (- n 1))) => Phi
```

- There are infinitely many such functions!
- E.g.:

```(definec nind (n :nat) :nat (if (equal n 0) 0 (nind (- n 1))))```
```(definec nind2 (n :nat) :nat (if (equal n 0) 42 (+ 1 (nind2 (- n 1)))))```
```(definec nind3 (n :nat) :tl (if (equal n O) nil (cons n (nind3 (- n 1)))))```

## Playing the game in reverse: example 2

- What function gives rise to this induction scheme?

```
PO1: (not (tlp x)) => Phi We also call this the induction
PO2: (tlp x) & (endp x) => Phi scheme of true lists
PO3: (tlp x) & (not (endp x)) & Phi|((x (rest x))) => Phi
```

- There are infinitely many such functions!
- E.g.:

```(definec rrev (x :tl) :tl (if (endp x) nil (aapp (rrev (rest x)) (list```	(first x)))))
```(definec llen (x :tl) :nat (if (endp x) 0 (+ 1 (llen (cdr x)))))```	
(definec tl3 (x :tl) :tl   (if (endp x) (list 42)   (cons $x$ (tl3 (cdr x)))))	-••

## Playing the game in reverse: example 3

- What function gives rise to this induction scheme?

```
PO1: (not (natp n)) => Phi
PO2: (natp n) & (equal n 0) => Phi
PO3: (natp n) & (not (equal n 0)) & Phi|((n (+ n 1))) => Phi
```

- No function, because this is not a valid induction scheme!
- E.g., this function doesn't terminate:

```
(definec bad (n :nat) :nat
 (if (equal n 0) 0
 (bad (+ n 1))))
```


## Playing the game in reverse: example 3

-Why isn't this a valid induction scheme?

```
PO1: (not (natp n)) => Phi
PO2: (natp n) & (equal n 0) => Phi
PO3: (natp n) & (not (equal n 0)) & Phi|((n (+ n 1))) => Phi
```

- Because it leads to unsoundness! How?
- Homework!

More proofs by induction

## Claim 1

```
(definec aapp (x :tl y :tl) :tl
 (if (endp x)
 Y
 (cons (car x) (aapp (cdr x) y))))
```

- Where might the result below be useful?

```
(aapp (aapp a b) c) = (aapp a (aapp b c))
```

- Compiler optimization, efficiency:
- (aapp a (aapp b c)) is more efficient code than (aapp (aapp a b) c) -why?
- First we must do contract completion:

$$
\begin{gathered}
(t l p a) \&(t l p b) \&(t l p c)=> \\
(\text { aapp }(\operatorname{aapp} a b) c)=(\operatorname{aapp} a(\operatorname{aapp} b c))
\end{gathered}
$$

## Claim 1

```
(definec aapp (x :tl y :tl) :tl
 (if (endp x)
 y
 (cons (car x) (aapp (cdr x) y))))
```

- Can we prove this using just equational reasoning?

```
 (tlp a) & (tlp b) & (tlp c) =>
(aapp (aapp a b) c) = (aapp a (aapp b c))
```

- No, need induction (lists can be arbitrarily long).
- Which induction scheme should we use?
- Hint: which variable "controls the recursion" in aapp?


## Claim 1

```
(definec aapp (x :tl y :tl) :tl
 (if (endp x)
 Y
 (cons (car x) (aapp (cdr x) y))))
```

- Let's use induction on true lists:

```
 (tlp a) & (tlp b) & (tlp c) =>
(aapp (aapp a b) c) = (aapp a (aapp b c))
```

```
PO1: (not (tlp x)) => Phi
PO2: (tlp x) & (endp x) => Phi
PO3: (tlp x) & (not (endp x)) & Phi|((x (cdr x))) => Phi
```

-What's going on? Why can't we prove Claim 1?

- We are always allowed to rename the variables!

```
PO1: (not (tlp a)) => Phi
PO2: (tlp a) & (endp a) => Phi
PO3: (tlp a) & (not (endp a)) & Phi|((a (cdr a))) => Phi
```


## Identifying the induction scheme you use

- In your proofs (homework, exam, ...) you must identify the induction scheme you use (if any).
- To do that, you identify both the function and the arguments to the function (i.e., variable names).
- Examples:
- "I'm using the induction scheme of (tlp x)":

```
PO1: (not (tlp x)) => Phi
PO2: (tlp x) & (endp x) => Phi
PO3: (tlp x) & (not (endp x)) & Phi|((x (cdr x))) => Phi
```

- "I'm using the induction scheme of (tlp a)":

```
PO1: (not (tlp a)) => Phi
PO2: (tlp a) & (endp a) => Phi
PO3: (tlp a) & (not (endp a)) & Phi|((a (cdr a))) => Phi
```


## Next time

- Induction continued

