
Logic and Computation – CS 2800
Fall 2019

Lecture 27
Induction continued

Stavros Tripakis

Outline

• Validity of induction
• More examples

Tripakis Logic and Computation, Fall 2019 2

Validity of induction

Tripakis Logic and Computation, Fall 2019 3

What induction really says

• What does this induction scheme really say?

• It says: “if PO1 is a theorem, and PO2 is theorem, and PO3 is
a theorem, then Phi is a theorem”.

• In first-order logic, we would write this as follows (assuming n is

the only free variable in Phi):

• Notice that the above is different from the following (the
following does not hold!):

Tripakis Logic and Computation, Fall 2019 4

PO1: (not (natp n)) => Phi
PO2: (natp n) & (equal n 0) => Phi
PO3: (natp n) & (not (equal n 0)) & Phi|((n (- n 1))) => Phi

Soundness and completeness

• Soundness: if I’m able to prove something, then
that something is indeed true.

• Completeness: if something is true, then I’m able
to prove it.

• Every induction scheme that admissible functions
give rise to is sound, but not complete in general.
 Why not complete? E.g., in the last lecture we could not

prove (aapp x nil) = x using the induction scheme of
aapp.

Tripakis Logic and Computation, Fall 2019 5

So why does induction work? (i.e.,
why is it sound?)
• Consider this induction scheme:

• Proof by contradiction:
 Suppose we have proved PO1,2,3, but Phi is not true.
 Then there must be some object in the ACL2s universe that makes Phi

false: let that object be x.
 If x is not a nat, then we could not have proved PO1 – why? So x must

be a nat.
 If x=0 then we could not have proved PO2 – why? So x>0.
 Let x be the smallest nat which violates Phi. Then x-1 satisfies Phi,

meaning that Phi|((n (- x 1))) holds. But then all assumptions of PO3
hold, so Phi must also hold, otherwise we could not have proved PO3.
Contradiction.

Tripakis Logic and Computation, Fall 2019 6

PO1: (not (natp n)) => Phi
PO2: (natp n) & (equal n 0) => Phi
PO3: (natp n) & (not (equal n 0)) & Phi|((n (- n 1))) => Phi

But what about other induction schemes?
• E.g.:

• Again, proof by contradiction:
 Suppose we have proved PO1,2,3, but Phi is not true.
 Then there must be some object in the ACL2s universe that

makes Phi false: let that object be x.
 If x is not a true list, then we could not have proved PO1. So x

must be a true list.
 If x=nil then we could not have proved PO2. So x≠nil.
 Let x be a “shortest true list” which violates Phi, meaning that

(cdr x) satisfies Phi. Therefore, Phi|((x (cdr x))) holds. But then
all assumptions of PO3 hold, so Phi must also hold, otherwise
we could not have proved PO3. Contradiction.

Tripakis Logic and Computation, Fall 2019 7

PO1: (not (tlp x)) => Phi
PO2: (tlp x) & (endp x) => Phi
PO3: (tlp x) & (not (endp x)) & Phi|((x (cdr x))) => Phi

More examples

Tripakis Logic and Computation, Fall 2019 8

Example 3
• What induction scheme does the Fibonacci function give rise to?

Tripakis Logic and Computation, Fall 2019 9

(definec-no-test fib (n :nat) :nat
(if (< n 2)

n
(+ (fib (- n 1))

(fib (- n 2)))))

Example 3
• What induction schemes does the Fibonacci function give rise to?

Tripakis Logic and Computation, Fall 2019 10

(definec-no-test fib (n :nat) :nat
(if (< n 2)

n
(+ (fib (- n 1))

(fib (- n 2)))))

PO1. (not (natp n)) => Phi
PO2. (natp n) & (< n 2) => Phi
PO3. (natp n) & (>= n 2)

& Phi|((n (- n 1)))
& Phi|((n (- n 2)))

=> Phi

Playing the game in reverse:
example 1
• What function gives rise to this induction scheme?

• There are infinitely many such functions!
• E.g.:

Tripakis Logic and Computation, Fall 2019 11

PO1: (not (natp n)) => Phi
PO2: (natp n) & (equal n 0) => Phi
PO3: (natp n) & (not (equal n 0)) & Phi|((n (- n 1))) => Phi

(definec nind (n :nat) :nat
(if (equal n 0) 0
(nind (- n 1))))

(definec nind2 (n :nat) :nat
(if (equal n 0) 42
(+ 1 (nind2 (- n 1)))))

(definec nind3 (n :nat) :tl
(if (equal n 0) nil
(cons n (nind3 (- n 1)))))

…

We also call this the induction
scheme of natural numbers

Playing the game in reverse:
example 2
• What function gives rise to this induction scheme?

• There are infinitely many such functions!
• E.g.:

Tripakis Logic and Computation, Fall 2019 12

PO1: (not (tlp x)) => Phi
PO2: (tlp x) & (endp x) => Phi
PO3: (tlp x) & (not (endp x)) & Phi|((x (rest x))) => Phi

(definec rrev (x :tl) :tl
(if (endp x) nil
(aapp (rrev (rest x)) (list (first x)))))

(definec llen (x :tl) :nat
(if (endp x) 0
(+ 1 (llen (cdr x)))))

(definec tl3 (x :tl) :tl
(if (endp x) (list 42)
(cons x (tl3 (cdr x)))))

…

We also call this the induction
scheme of true lists

Playing the game in reverse:
example 3
• What function gives rise to this induction scheme?

• No function, because this is not a valid induction
scheme!

• E.g., this function doesn’t terminate:

Tripakis Logic and Computation, Fall 2019 13

PO1: (not (natp n)) => Phi
PO2: (natp n) & (equal n 0) => Phi
PO3: (natp n) & (not (equal n 0)) & Phi|((n (+ n 1))) => Phi

(definec bad (n :nat) :nat
(if (equal n 0) 0
(bad (+ n 1))))

Playing the game in reverse:
example 3
• Why isn’t this a valid induction scheme?

• Because it leads to unsoundness! How?
• Homework!

Tripakis Logic and Computation, Fall 2019 14

PO1: (not (natp n)) => Phi
PO2: (natp n) & (equal n 0) => Phi
PO3: (natp n) & (not (equal n 0)) & Phi|((n (+ n 1))) => Phi

More proofs by induction

Tripakis Logic and Computation, Fall 2019 15

Claim 1

• Where might the result below be useful?

• Compiler optimization, efficiency:
 (aapp a (aapp b c)) is more efficient code than

(aapp (aapp a b) c) – why?

• First we must do contract completion:

Tripakis Logic and Computation, Fall 2019 16

(aapp (aapp a b) c) = (aapp a (aapp b c))

(tlp a) & (tlp b) & (tlp c) =>
(aapp (aapp a b) c) = (aapp a (aapp b c))

(definec aapp (x :tl y :tl) :tl
(if (endp x)

y
(cons (car x) (aapp (cdr x) y))))

Claim 1

• Can we prove this using just equational reasoning?

• No, need induction (lists can be arbitrarily long).

• Which induction scheme should we use?
• Hint: which variable “controls the recursion” in
aapp?

Tripakis Logic and Computation, Fall 2019 17

(tlp a) & (tlp b) & (tlp c) =>
(aapp (aapp a b) c) = (aapp a (aapp b c))

(definec aapp (x :tl y :tl) :tl
(if (endp x)

y
(cons (car x) (aapp (cdr x) y))))

Claim 1

• Let’s use induction on true lists:

• What’s going on? Why can’t we prove Claim 1?
• We are always allowed to rename the variables!

Tripakis Logic and Computation, Fall 2019 18

(tlp a) & (tlp b) & (tlp c) =>
(aapp (aapp a b) c) = (aapp a (aapp b c))

PO1: (not (tlp x)) => Phi
PO2: (tlp x) & (endp x) => Phi
PO3: (tlp x) & (not (endp x)) & Phi|((x (cdr x))) => Phi

PO1: (not (tlp a)) => Phi
PO2: (tlp a) & (endp a) => Phi
PO3: (tlp a) & (not (endp a)) & Phi|((a (cdr a))) => Phi

(definec aapp (x :tl y :tl) :tl
(if (endp x)

y
(cons (car x) (aapp (cdr x) y))))

Identifying the induction scheme
you use
• In your proofs (homework, exam, …) you must identify the induction

scheme you use (if any).

• To do that, you identify both the function and the arguments to the
function (i.e., variable names).

• Examples:
 “I’m using the induction scheme of (tlp x)”:

 “I’m using the induction scheme of (tlp a)”:

Tripakis Logic and Computation, Fall 2019 19

PO1: (not (tlp x)) => Phi
PO2: (tlp x) & (endp x) => Phi
PO3: (tlp x) & (not (endp x)) & Phi|((x (cdr x))) => Phi

PO1: (not (tlp a)) => Phi
PO2: (tlp a) & (endp a) => Phi
PO3: (tlp a) & (not (endp a)) & Phi|((a (cdr a))) => Phi

Next time

• Induction continued

Tripakis Logic and Computation, Fall 2019 20

