Logic and Computation — CS 2800
Fall 2019

Lecture 25

Induction

Stavros Tripakis

Northeastern University
Khoury College of
Computer Sciences

Induction

The limitations of equational
reasoning

 Consider:

(definec aapp (x :tl y :tl) :tl
(1f (endp x) vy
(cons (car x) (aapp (cdr x) v))))

(defthm nil-aapp
(implies (tlp vy)
(equal (aapp nil y) vy)))

(defthm aapp-nil
(implies (tlp x)
(equal (aapp x nil) ?2?2?)))

Logic and Computation, Fall 2019

The limitations of equational
reasoning

 Consider:

(definec aapp (x :tl y :tl) :tl
(1f (endp x) vy
(cons (car x) (aapp (cdr x) v))))

(defthm nil-aapp
(implies (tlp vy)
(equal (aapp nil y) vy)))

(defthm aapp-nil
(implies (tlp x)
(equal (aapp x nil) x)))

What happens when we try to prove the two theorems above?

Logic and Computation, Fall 2019

Induction

* Recall the standard mathematical induction that you
learned in discrete math:

= |n order to prove that something holds for all n € Nat, it
suffices to prove:
1. Base case: thatit holds forn =0
2. Induction step: that it holds for n 4+ 1, assuming that it holds forn

. The “assuming that it holds for n” part is called induction hypothesis
n(n+1
= Example: prove that Y} _on = (»)

* |n this course we will see a much more powerful kind of
induction:

= Every admissible (so, terminating) function generates an
induction scheme!

Example:

* The following function is terminating and admissible:

(definec nind (n :nat) :nat
(1f (equal n 0)
0
(nind (- n 1))))

* Induction scheme generated by nind
In order to prove a property Phi, it suffices to prove:

PO1:
PO2:
PO3:

(not (natp n)) => Phi

(natp n) &
(natp n) &

(equal n 0) => Phi
(not (equal n 0)) & Phi|((n (- n 1))) => Phi

Proof obligations PO1 and PO2 are base cases.
Proof obligation PO3 is the induction step.

Phi| ((n

(= n 1))) istheinduction hypothesis.

Example:

* We use the induction scheme generated by nind
to prove the following:

(definec sumn (n :nat) :nat
(1f (equal n 0)
0
(+ n (sumn (- n 1)))))
Phi:

(thm (1mplies (natp n)
(equal (sumn n)

(/ (*n (+ n 1)) 2))))

What are our proof obligations?

Tripakis Logic and Computation, Fall 2019

Example:

Phi:
(thm

PO1:
PO1:

(definec sumn (n :nat) :nat
(1f

(equal n 0)

(+ n (sumn (- n 1)))))

(implies (natp n)
(equal (sumn n)
(/ (*n (+ n 1))

(not (natp n)) => Phi
(not (natp n))
=> ((natp n)
=> (sumn n)

I
~

2))))

(* n

(+ n 1))

Tripakis

Logic and Computation, Fall 2019

Example:

(definec sumn (n :nat) :nat
(1f (equal n 0)
0
(+ n (sumn (- n 1)))))
Phi:

(thm (implies (natp n)
(equal (sumn n)

(/ (*n (+ n 1)) 2))))

PO2: (natp n) & (equal n 0) => Phi
PO2: (natp n) & (equal n 0)
=> ((natp n)
=> (sumn n) = (/ (* n (+ n 1))

Tripakis Logic and Computation, Fall 2019

Example:

(definec sumn (n :nat) :nat
(1f (equal n 0)
0
(+ n (sumn (- n 1)))))
Phi:

(thm (implies (natp n)
(equal (sumn n)

(/ (*n (+ n 1)) 2))))

PO3: (natp n) & (not (equal n 0)) & Phi| ((n (- n 1))) => Phi
PO3: (natp n) & (not (equal n 0)) &
((natp (n-1)) => (sumn (n-1)) = (/ (* (n-1) (n-141)) 2))

=> ((natp n)
=> (sumn n) = (/ (* n (+ n 1)) 2))

Tripakis Logic and Computation, Fall 2019

Next time

* Induction continued

