
Logic and Computation – CS 2800
Fall 2019

Lecture 25
Induction

Stavros Tripakis

Induction

Tripakis Logic and Computation, Fall 2019 2

The limitations of equational
reasoning
• Consider:

Tripakis Logic and Computation, Fall 2019 3

(definec aapp (x :tl y :tl) :tl
(if (endp x) y
(cons (car x) (aapp (cdr x) y))))

(defthm nil-aapp
(implies (tlp y)

(equal (aapp nil y) y)))

(defthm aapp-nil
(implies (tlp x)

(equal (aapp x nil) ???)))

The limitations of equational
reasoning
• Consider:

Tripakis Logic and Computation, Fall 2019 4

(definec aapp (x :tl y :tl) :tl
(if (endp x) y
(cons (car x) (aapp (cdr x) y))))

(defthm nil-aapp
(implies (tlp y)

(equal (aapp nil y) y)))

(defthm aapp-nil
(implies (tlp x)

(equal (aapp x nil) x)))

What happens when we try to prove the two theorems above?

Induction

• Recall the standard mathematical induction that you
learned in discrete math:
 In order to prove that something holds for all , it

suffices to prove:
1. Base case: that it holds for
2. Induction step: that it holds for , assuming that it holds for

• The “assuming that it holds for 𝑛” part is called induction hypothesis

 Example: prove that ()

• In this course we will see a much more powerful kind of
induction:
 Every admissible (so, terminating) function generates an

induction scheme!

Tripakis Logic and Computation, Fall 2019 5

Example:

• The following function is terminating and admissible:

• Induction scheme generated by nind :
 In order to prove a property Phi, it suffices to prove:

 Proof obligations PO1 and PO2 are base cases.
 Proof obligation PO3 is the induction step.
 Phi|((n (- n 1))) is the induction hypothesis.

Tripakis Logic and Computation, Fall 2019 6

(definec nind (n :nat) :nat
(if (equal n 0)
0
(nind (- n 1))))

PO1: (not (natp n)) => Phi
PO2: (natp n) & (equal n 0) => Phi
PO3: (natp n) & (not (equal n 0)) & Phi|((n (- n 1))) => Phi

Example:

• We use the induction scheme generated by nind
to prove the following:

Tripakis Logic and Computation, Fall 2019 7

(definec sumn (n :nat) :nat
(if (equal n 0)
0
(+ n (sumn (- n 1)))))

Phi:
(thm (implies (natp n)

(equal (sumn n)
(/ (* n (+ n 1)) 2))))

What are our proof obligations?

Example:

Tripakis Logic and Computation, Fall 2019 8

(definec sumn (n :nat) :nat
(if (equal n 0)
0
(+ n (sumn (- n 1)))))

Phi:
(thm (implies (natp n)

(equal (sumn n)
(/ (* n (+ n 1)) 2))))

PO1: (not (natp n)) => Phi
PO1: (not (natp n))

=> ((natp n)
=> (sumn n) = (/ (* n (+ n 1)) 2))

Example:

Tripakis Logic and Computation, Fall 2019 9

(definec sumn (n :nat) :nat
(if (equal n 0)
0
(+ n (sumn (- n 1)))))

Phi:
(thm (implies (natp n)

(equal (sumn n)
(/ (* n (+ n 1)) 2))))

PO2: (natp n) & (equal n 0) => Phi
PO2: (natp n) & (equal n 0)

=> ((natp n)
=> (sumn n) = (/ (* n (+ n 1)) 2))

Example:

Tripakis Logic and Computation, Fall 2019 10

(definec sumn (n :nat) :nat
(if (equal n 0)
0
(+ n (sumn (- n 1)))))

Phi:
(thm (implies (natp n)

(equal (sumn n)
(/ (* n (+ n 1)) 2))))

PO3: (natp n) & (not (equal n 0)) & Phi|((n (- n 1))) => Phi
PO3: (natp n) & (not (equal n 0)) &

((natp (n-1)) => (sumn (n-1)) = (/ (* (n-1) (n-1+1)) 2))
=> ((natp n)

=> (sumn n) = (/ (* n (+ n 1)) 2))

Next time

• Induction continued

Tripakis Logic and Computation, Fall 2019 11

