Logic and Computation - CS 2800 Fall 2019

Lecture 24
More on admissibility and termination
Undecidability

Stavros Tripakis

Northeastern University Khoury College of
Computer Sciences

Outline

- Leftover examples of measure functions
- Admissibility of common recursion schemes
- Undecidability
- Some notes on termination

Measure functions: more examples

Example from lab 08

```
(definec app?-t4 (x :tl y :tl acc :tl) :tl
    (cond ((and (endp x) (endp y)) acc)
        ((endp x) (app?-t4 x (rest y) (cons (first y) acc)))
        ((endp y) (app?-t4 y x acc))
        (t (app?-t4 x nil (app?-t4 acc nil y)))))
Consider this candidate measure function:
(m x y acc) = (if (endp y) (len x) (len y))
Is this a valid measure function for app?-t4?
```


The two quiz examples

Measure functions?
Proof obligations?

```
(definec drop-last (x :tl) :tl
    (if (endp (rest x))
        nil
        (cons (first x) (drop-last (rest x)))))
(definec prefixes (X :tl) :tl
    (if (endp X)
            '( () )
    (cons X (prefixes (drop-last X)))))
```

Admissibility of common recursion schemes

Recall the definition of measure functions

- m is a valid measure function for function f if:

1. m is defined over exactly the same parameters as f
2. m has exactly the same input contract as f
3. The output contract of m states that m returns a nat
4. m is admissible
5. On every recursive call to f, if we call m with the same arguments as f on that recursive call, and under the conditions that led to that recursive call, then m decreases.

- We examine several common recursion schemes and their corresponding measure functions

Common recursion scheme 1

- Recursion down a list:

```
(defunc f (x1 ... xn)
    :input-contract (and ... (tlp xi) ...)
    :output-contract ...
    (if (endp xi)
    (... (f ... (rest xi) ...) ...)))
```

- We assume:
- No other recursive calls except the one above
- (rest xi) is passed as the i-th argument to f

Common recursion scheme 1

- This works more generally when there's several recursive calls, as long as all of them follow the same pattern:

```
(defunc f (x1 x2)
    :input-contract (and (tlp x1) (tlp x2))
    :output-contract (tlp (f x1 x2))
    (cond ((endp x1) x2)
        ((endp x2) x1)
        (t (list (f (rest x1) (rest x2))
                            (f (rest x1) (f (rest x1) (cons x2 x2)))))))
```

Measure function:

```
(defunc m (x1 x2)
    :input-contract (and (tlp x1) (tlp x2))
    :output-contract (natp (m x1 x2))
    (len xl))
```


Common recursion scheme 2

- Decrementing a natural number:

```
(defunc f (x1 ... xn)
    :input-contract (and ... (natp xi) ...)
    :output-contract ...
    (if (equal xi 0)
    (... (f ... (- xi 1) ...) ...)))
```

- We assume:
- No other recursive calls except the one above
- (- xi 1) is passed as the i-th argument to f

What about functions defined over our own recursive data types?

- Simple Boolean formulas:

```
(defdata UnaryOp '~)
(defdata BinaryOp (enum (list '& '+)))
(defdata Formula (oneof boolean
    (list UnaryOp Formula)
    (list Formula BinaryOp Formula)))
(definec eval-formula (f :Formula) :bool
    (cond ((booleanp f) f)
            ((UnaryOpp (car f)) (not (eval-formula (second f))))
    ((equal (second f) '&) (and (eval-formula (first f))
        (eval-formula (third f))))
    (t (or (eval-formula (first f))
        (eval-formula (third f))))))
```

 How can we prove termination of eval-formula?
 What would a measure function be?

What about functions defined over our own recursive data types?

- len:

```
(defdata UnaryOp '~)
(defdata BinaryOp (enum (list '& '+)))
(defdata Formula (oneof boolean
                                    (list UnaryOp Formula)
                                    (list Formula BinaryOp Formula)))
(check= (len t) 0)
(check= (len nil) 0)
(check= (len '~) 0)
(check= (Formulap '(~ t)) t)
(check= (len '(~ t)) 2)
(check= (Formulap '(nil & t)) t)
(check= (len '(nil & t)) 3)
```

Note that len is a predefined function. This is different from llen.

What about functions defined over our own recursive data types?

- len:

```
ACL2S !>QUERY :doc len
ACL2::LEN -- ACL2 Sources
Parents: ACL2::LISTS and ACL2::ACL2-BUILT-INS.
    Length of a list
    Len returns the length of a list.
    A Common Lisp function that is appropriate for both strings and
    proper lists is length; see [length]. The guard for len is t.
    (Low-level implementation note. ACL2 provides a highly-optimized
    implementation of len, which is tail-recursive and fixnum-aware,
    that differs from its simple ACL2 definition.)
    Function: <len>
    (defun len (x)
    (declare (xargs :guard t))
    We can use the theorem:
                                (consp x) =>
(len x) = 1 + (len (cdr x))
    (if (consp x) (+ 1 (len (cdr x))) 0))
```


What about functions defined over our own recursive data types?

- len:

```
(defdata UnaryOp '~)
(defdata BinaryOp (enum (list '& '+)))
(defdata Formula (oneof boolean
                            (list UnaryOp Formula)
                            (list Formula BinaryOp Formula)))
(definec eval-formula (f :Formula) :bool
    (cond ((booleanp f) f)
        ((UnaryOpp (car f)) (not (eval-formula (second f))))
        ((equal (second f) '&) (and (eval-formula (first f))
        (eval-formula (third f))))
        (t (or (eval-formula (first f))
        (eval-formula (third f))))))
```

Would len work as a measure function for eval-formula?

What about functions defined over our own recursive data types?

- acl2-count:

```
(check= (acl2-count t) 0)
(check= (acl2-count nil) 0)
(check= (acl2-count '~) 0)
(check= (Formulap '(~ t)) t)
(check= (acl2-count '(~ t)) 2)
(check= (Formulap '(nil & t)) t)
(check= (acl2-count '(nil & t)) 3)
(check= (len '(1 2)) 2)
(check= (acl2-count '(1 2)) 5)
```

acl2-count is a predefined function.

What about functions defined over our own recursive data types?

-acl2-count:

```
ACL2S !>QUERY :doc acl2-count
    A commonly used measure for justifying recursion
    (Acl2-count x) returns a nonnegative integer that indicates the
    '`size'' of its argument x.
    Function: <acl2-count>
        (defun acl2-count (x)
            (declare (xargs :guard t))
            (if (consp x)
                        (+ 1 (acl2-count (car x))
                        (acl2-count (cdr x)))
                        (if (rationalp x)
                        (if (integerp x)
                            (integer-abs x)
                            (+ (integer-abs (numerator x))
                        (denominator x)))
                        (if (complex/complex-rationalp x)
                            (+ 1 (acl2-count (realpart x))
                                (acl2-count (imagpart x)))
                            (if (stringp x) (length x) 0)))))
```


Undecidability

Alan Turing (1912-1954)

- Logician, computer scientist, cryptanalyst, philosopher, ...
- Invented Turing Machines, launching computer science
- Helped break the Enigma machine used by the Nazis during WW2
- Prosecuted in 1952 for homosexual acts ("gross indecency")
- Forced to choose between prison and chemical castration - chose the latter
- In 2019 there's still "conversion therapy"
- Died in 1954
- Pardoned in 2013
- Will be depicted in next $£ 50$ note

Undecidability of the halting problem of Turing machines

- Undecidability of the halting problem of Turing machines without knowing Turing machines

Termination, complexity, and measure functions

Big-O notation, termination, and measure functions

- What does it mean if the running time for a program is $O\left(n^{2}\right)$, where n is the size of the input?
- It means that:

1. The program terminates.
2. There is a constant c such that the program terminates in at most $c \cdot n^{2}$ steps.

- Complexity analysis is a refinement of termination: not only we want to show that our program terminates, but we also want to compute how many steps it will require to compute, in the worst case.
- If a measure function for $(\mathrm{f} n)$ is $(m n)=n$, does this mean that f has linear time complexity, i.e., $O(n)$?

Big-O notation, termination, and measure functions

- If a measure function for $(\mathrm{f} n$) is ($m \mathrm{n}$) $=\mathrm{n}$, does this mean that f has linear time complexity, i.e., $O(n)$?
- No!
- Measure functions bound the depth of the recursion tree, but not its breadth.
- Example: the Fibonacci function:

```
(definec-no-test fib (n :nat) :nat
    (if (< n 2)
        n
        (+ (fib (- n 1))
                        (fib (- n 2)))))
```

- See 24-fib.lisp

Limitations of measure functions

- Are there functions that terminate, but we cannot prove that they do with measure functions?
- Yes:
- Example: the Ackermann function:

```
(definec-no-test ack (m :nat n :nat) :pos
    (cond ((= m 0) (+ 1 n))
        ((= n 0) (ack (-m 1) 1))
        (t (ack (-m 1) (ack m (- n 1))))))
```

- Terminating, but not primitive recursive!
- Most "reasonable" computable (terminating) functions are primitive-recursive.
- To prove that it terminates:
- Use lexicographic order on (m, n) pairs.

Termination: remarks

- No widely used programming language offers termination analysis.
- Some software model checking tools do.
- Checking termination automatically is impossible in general, but is possible in some cases!
- The above verification tools try to prove (or disprove) termination, and return:
- Either "I proved that it terminates"
- Or "I proved that it doesn't terminate"
- Or "I don’t know".
- This is an active area of research.
- Take CS 4830 if you want to learn more.

Termination: remarks

- Non-termination is sometimes useful and desirable:
- Reactive systems: systems that continuously react to environment inputs, without terminating.
- Communication protocols (TCP/IP, ...), embedded software (avionics etc. controllers, ...), web servers, robots, ...
- Even for reactive systems, termination is important:
- An execution of the reactive system goes on forever, but one step in that execution (i.e., a single "reaction") must terminate!
- Take CS 4830 if you want to learn more about these systems.

Next time

- Induction

