
Logic and Computation – CS 2800
Fall 2019

Lecture 24
More on admissibility and termination

Undecidability

Stavros Tripakis

Outline

• Leftover examples of measure functions
• Admissibility of common recursion schemes
• Undecidability
• Some notes on termination

Tripakis Logic and Computation, Fall 2019 2

Measure functions: more
examples

Tripakis Logic and Computation, Fall 2019 3

Example from lab 08

Tripakis Logic and Computation, Fall 2019 4

(definec app?-t4 (x :tl y :tl acc :tl) :tl
(cond ((and (endp x) (endp y)) acc)

((endp x) (app?-t4 x (rest y) (cons (first y) acc)))
((endp y) (app?-t4 y x acc))
(t (app?-t4 x nil (app?-t4 acc nil y)))))

Consider this candidate measure function:
(m x y acc) = (if (endp y) (len x) (len y))

Is this a valid measure function for app?-t4?

The two quiz examples

Tripakis Logic and Computation, Fall 2019 5

(definec drop-last (x :tl) :tl
(if (endp (rest x))

nil
(cons (first x) (drop-last (rest x)))))

(definec prefixes (X :tl) :tl
(if (endp X)

'(())
(cons X (prefixes (drop-last X)))))

Admissible?

Measure functions?

Proof obligations?

Admissibility of common
recursion schemes

Tripakis Logic and Computation, Fall 2019 6

Recall the definition of measure
functions
• m is a valid measure function for function f if:

1. m is defined over exactly the same parameters as f
2. m has exactly the same input contract as f
3. The output contract of m states that m returns a nat
4. m is admissible
5. On every recursive call to f, if we call m with the same

arguments as f on that recursive call, and under the
conditions that led to that recursive call, then m decreases.

• We examine several common recursion schemes and
their corresponding measure functions

Tripakis Logic and Computation, Fall 2019 7

Common recursion scheme 1

• Recursion down a list:

• We assume:
 No other recursive calls except the one above
 (rest xi) is passed as the i-th argument to f

Tripakis Logic and Computation, Fall 2019 8

(defunc f (x1 ... xn)
:input-contract (and ... (tlp xi) ...)
:output-contract ...
(if (endp xi)

...
(... (f ... (rest xi) ...) ...)))

(defunc m (x1 ... xn)
:input-contract (and ... (tlp xi) ...)
:output-contract (natp (m x1 ... xn))
(len xi))

Measure
function:

Common recursion scheme 1

• This works more generally when there’s several
recursive calls, as long as all of them follow the
same pattern:

Tripakis Logic and Computation, Fall 2019 9

(defunc f (x1 x2)
:input-contract (and (tlp x1) (tlp x2))
:output-contract (tlp (f x1 x2))
(cond ((endp x1) x2)

((endp x2) x1)
(t (list (f (rest x1) (rest x2))

(f (rest x1) (f (rest x1) (cons x2 x2)))))))

(defunc m (x1 x2)
:input-contract (and (tlp x1) (tlp x2))
:output-contract (natp (m x1 x2))
(len x1))

Measure
function:

Common recursion scheme 2

• Decrementing a natural number:

• We assume:
 No other recursive calls except the one above
 (- xi 1) is passed as the i-th argument to f

Tripakis Logic and Computation, Fall 2019 10

(defunc f (x1 ... xn)
:input-contract (and ... (natp xi) ...)
:output-contract ...
(if (equal xi 0)

...
(... (f ... (- xi 1) ...) ...)))

(defunc m (x1 ... xn)
:input-contract (and ... (tlp xi) ...)
:output-contract (natp (m x1 ... xn))
xi)

Measure
function:

What about functions defined over
our own recursive data types?
• Simple Boolean formulas:

Tripakis Logic and Computation, Fall 2019 11

(defdata UnaryOp '~)
(defdata BinaryOp (enum (list '& '+)))
(defdata Formula (oneof boolean

(list UnaryOp Formula)
(list Formula BinaryOp Formula)))

(definec eval-formula (f :Formula) :bool
(cond ((booleanp f) f)

((UnaryOpp (car f)) (not (eval-formula (second f))))
((equal (second f) '&) (and (eval-formula (first f))

(eval-formula (third f))))
(t (or (eval-formula (first f))

(eval-formula (third f))))))

How can we prove termination of eval-formula?
What would a measure function be?

What about functions defined over
our own recursive data types?
• len:

Tripakis Logic and Computation, Fall 2019 12

(defdata UnaryOp '~)
(defdata BinaryOp (enum (list '& '+)))
(defdata Formula (oneof boolean

(list UnaryOp Formula)
(list Formula BinaryOp Formula)))

(check= (len t) 0)
(check= (len nil) 0)
(check= (len '~) 0)
(check= (Formulap '(~ t)) t)
(check= (len '(~ t)) 2)
(check= (Formulap '(nil & t)) t)
(check= (len '(nil & t)) 3)

Note that len is a predefined function.
This is different from llen.

What about functions defined over
our own recursive data types?
• len:

Tripakis Logic and Computation, Fall 2019 13

ACL2S !>QUERY :doc len
ACL2::LEN -- ACL2 Sources
Parents: ACL2::LISTS and ACL2::ACL2-BUILT-INS.

Length of a list

Len returns the length of a list.

A Common Lisp function that is appropriate for both strings and
proper lists is length; see [length]. The guard for len is t.

(Low-level implementation note. ACL2 provides a highly-optimized
implementation of len, which is tail-recursive and fixnum-aware,
that differs from its simple ACL2 definition.)

Function: <len>

(defun len (x)
(declare (xargs :guard t))
(if (consp x) (+ 1 (len (cdr x))) 0))

We can use the theorem:
(consp x) =>

(len x) = 1 + (len (cdr x))

What about functions defined over
our own recursive data types?
• len:

Tripakis Logic and Computation, Fall 2019 14

(defdata UnaryOp '~)
(defdata BinaryOp (enum (list '& '+)))
(defdata Formula (oneof boolean

(list UnaryOp Formula)
(list Formula BinaryOp Formula)))

(definec eval-formula (f :Formula) :bool
(cond ((booleanp f) f)

((UnaryOpp (car f)) (not (eval-formula (second f))))
((equal (second f) '&) (and (eval-formula (first f))

(eval-formula (third f))))
(t (or (eval-formula (first f))

(eval-formula (third f))))))

Would len work as a measure function for eval-formula?

What about functions defined over
our own recursive data types?
• acl2-count:

Tripakis Logic and Computation, Fall 2019 15

(check= (acl2-count t) 0)
(check= (acl2-count nil) 0)
(check= (acl2-count '~) 0)
(check= (Formulap '(~ t)) t)
(check= (acl2-count '(~ t)) 2)
(check= (Formulap '(nil & t)) t)
(check= (acl2-count '(nil & t)) 3)

(check= (len '(1 2)) 2)
(check= (acl2-count '(1 2)) 5)

acl2-count is a predefined function.

What about functions defined over
our own recursive data types?
• acl2-count:

Tripakis Logic and Computation, Fall 2019 16

ACL2S !>QUERY :doc acl2-count

A commonly used measure for justifying recursion

(Acl2-count x) returns a nonnegative integer that indicates the
``size'' of its argument x.

Function: <acl2-count>

(defun acl2-count (x)
(declare (xargs :guard t))
(if (consp x)

(+ 1 (acl2-count (car x))
(acl2-count (cdr x)))

(if (rationalp x)
(if (integerp x)

(integer-abs x)
(+ (integer-abs (numerator x))

(denominator x)))
(if (complex/complex-rationalp x)

(+ 1 (acl2-count (realpart x))
(acl2-count (imagpart x)))

(if (stringp x) (length x) 0)))))

We can use the theorem:
(consp x) =>
(acl2-count x) =
(+ 1 (acl2-count (car x))

(acl2-count (cdr x))))))

Undecidability

Tripakis Logic and Computation, Fall 2019 17

Alan Turing (1912 – 1954)

Tripakis Logic and Computation, Fall 2019 18

• Logician, computer scientist, cryptanalyst,
philosopher, …

• Invented Turing Machines, launching
computer science

• Helped break the Enigma machine used by
the Nazis during WW2

• Prosecuted in 1952 for homosexual acts
(“gross indecency”)
 Forced to choose between prison and

chemical castration – chose the latter
 In 2019 there’s still “conversion therapy”

• Died in 1954
• Pardoned in 2013
• Will be depicted in next £50 note

Undecidability of the halting
problem of Turing machines

Tripakis Logic and Computation, Fall 2019 19

• Undecidability of the halting problem of Turing
machines without knowing Turing machines

Termination, complexity, and
measure functions

Tripakis Logic and Computation, Fall 2019 20

Big-O notation, termination, and
measure functions
• What does it mean if the running time for a program is

, where is the size of the input?
 It means that:

1. The program terminates.
2. There is a constant such that the program terminates in at most

ଶ steps.

• Complexity analysis is a refinement of termination: not
only we want to show that our program terminates, but
we also want to compute how many steps it will require
to compute, in the worst case.

• If a measure function for (f n) is (m n) = n, does this
mean that f has linear time complexity, i.e., ?

Tripakis Logic and Computation, Fall 2019 21

Big-O notation, termination, and
measure functions
• If a measure function for (f n) is (m n) = n, does this

mean that f has linear time complexity, i.e., ?
• No!

 Measure functions bound the depth of the recursion
tree, but not its breadth.

• Example: the Fibonacci function:

• See 24-fib.lisp

Tripakis Logic and Computation, Fall 2019 22

(definec-no-test fib (n :nat) :nat
(if (< n 2)

n
(+ (fib (- n 1))

(fib (- n 2)))))

Limitations of measure functions
• Are there functions that terminate, but we cannot

prove that they do with measure functions?
• Yes:
• Example: the Ackermann function:

• Terminating, but not primitive recursive!
 Most “reasonable” computable (terminating) functions are

primitive-recursive.

• To prove that it terminates:
 Use lexicographic order on (m, n) pairs.

Tripakis Logic and Computation, Fall 2019 23

(definec-no-test ack (m :nat n :nat) :pos
(cond ((= m 0) (+ 1 n))

((= n 0) (ack (- m 1) 1))
(t (ack (- m 1) (ack m (- n 1))))))

Termination: remarks

• No widely used programming language offers
termination analysis.
 Some software model checking tools do.
 Checking termination automatically is impossible in

general, but is possible in some cases!
 The above verification tools try to prove (or disprove)

termination, and return:
• Either “I proved that it terminates”
• Or “I proved that it doesn’t terminate”
• Or “I don’t know”.

 This is an active area of research.
 Take CS 4830 if you want to learn more.

Tripakis Logic and Computation, Fall 2019 24

Termination: remarks

• Non-termination is sometimes useful and desirable:
 Reactive systems: systems that continuously react to

environment inputs, without terminating.
 Communication protocols (TCP/IP, …), embedded

software (avionics etc. controllers, …), web servers,
robots, …

 Even for reactive systems, termination is important:
• An execution of the reactive system goes on forever, but one

step in that execution (i.e., a single “reaction”) must terminate!

 Take CS 4830 if you want to learn more about these
systems.

Tripakis Logic and Computation, Fall 2019 25

Next time

• Induction

Tripakis Logic and Computation, Fall 2019 26

