
Logic and Computation – CS 2800
Fall 2019

Lecture 24
More on admissibility and termination

Undecidability

Stavros Tripakis

Outline

• Leftover examples of measure functions
• Admissibility of common recursion schemes
• Undecidability
• Some notes on termination

Tripakis Logic and Computation, Fall 2019 2

Measure functions: more
examples

Tripakis Logic and Computation, Fall 2019 3

Example from lab 08

Tripakis Logic and Computation, Fall 2019 4

(definec app?-t4 (x :tl y :tl acc :tl) :tl
(cond ((and (endp x) (endp y)) acc)

((endp x) (app?-t4 x (rest y) (cons (first y) acc)))
((endp y) (app?-t4 y x acc))
(t (app?-t4 x nil (app?-t4 acc nil y)))))

Consider this candidate measure function:
(m x y acc) = (if (endp y) (len x) (len y))

Is this a valid measure function for app?-t4?

The two quiz examples

Tripakis Logic and Computation, Fall 2019 5

(definec drop-last (x :tl) :tl
(if (endp (rest x))

nil
(cons (first x) (drop-last (rest x)))))

(definec prefixes (X :tl) :tl
(if (endp X)

'(())
(cons X (prefixes (drop-last X)))))

Admissible?

Measure functions?

Proof obligations?

Admissibility of common
recursion schemes

Tripakis Logic and Computation, Fall 2019 6

Recall the definition of measure
functions
• m is a valid measure function for function f if:

1. m is defined over exactly the same parameters as f
2. m has exactly the same input contract as f
3. The output contract of m states that m returns a nat
4. m is admissible
5. On every recursive call to f, if we call m with the same

arguments as f on that recursive call, and under the
conditions that led to that recursive call, then m decreases.

• We examine several common recursion schemes and
their corresponding measure functions

Tripakis Logic and Computation, Fall 2019 7

Common recursion scheme 1

• Recursion down a list:

• We assume:
 No other recursive calls except the one above
 (rest xi) is passed as the i-th argument to f

Tripakis Logic and Computation, Fall 2019 8

(defunc f (x1 ... xn)
:input-contract (and ... (tlp xi) ...)
:output-contract ...
(if (endp xi)

...
(... (f ... (rest xi) ...) ...)))

(defunc m (x1 ... xn)
:input-contract (and ... (tlp xi) ...)
:output-contract (natp (m x1 ... xn))
(len xi))

Measure
function:

Common recursion scheme 1

• This works more generally when there’s several
recursive calls, as long as all of them follow the
same pattern:

Tripakis Logic and Computation, Fall 2019 9

(defunc f (x1 x2)
:input-contract (and (tlp x1) (tlp x2))
:output-contract (tlp (f x1 x2))
(cond ((endp x1) x2)

((endp x2) x1)
(t (list (f (rest x1) (rest x2))

(f (rest x1) (f (rest x1) (cons x2 x2)))))))

(defunc m (x1 x2)
:input-contract (and (tlp x1) (tlp x2))
:output-contract (natp (m x1 x2))
(len x1))

Measure
function:

Common recursion scheme 2

• Decrementing a natural number:

• We assume:
 No other recursive calls except the one above
 (- xi 1) is passed as the i-th argument to f

Tripakis Logic and Computation, Fall 2019 10

(defunc f (x1 ... xn)
:input-contract (and ... (natp xi) ...)
:output-contract ...
(if (equal xi 0)

...
(... (f ... (- xi 1) ...) ...)))

(defunc m (x1 ... xn)
:input-contract (and ... (tlp xi) ...)
:output-contract (natp (m x1 ... xn))
xi)

Measure
function:

What about functions defined over
our own recursive data types?
• Simple Boolean formulas:

Tripakis Logic and Computation, Fall 2019 11

(defdata UnaryOp '~)
(defdata BinaryOp (enum (list '& '+)))
(defdata Formula (oneof boolean

(list UnaryOp Formula)
(list Formula BinaryOp Formula)))

(definec eval-formula (f :Formula) :bool
(cond ((booleanp f) f)

((UnaryOpp (car f)) (not (eval-formula (second f))))
((equal (second f) '&) (and (eval-formula (first f))

(eval-formula (third f))))
(t (or (eval-formula (first f))

(eval-formula (third f))))))

How can we prove termination of eval-formula?
What would a measure function be?

What about functions defined over
our own recursive data types?
• len:

Tripakis Logic and Computation, Fall 2019 12

(defdata UnaryOp '~)
(defdata BinaryOp (enum (list '& '+)))
(defdata Formula (oneof boolean

(list UnaryOp Formula)
(list Formula BinaryOp Formula)))

(check= (len t) 0)
(check= (len nil) 0)
(check= (len '~) 0)
(check= (Formulap '(~ t)) t)
(check= (len '(~ t)) 2)
(check= (Formulap '(nil & t)) t)
(check= (len '(nil & t)) 3)

Note that len is a predefined function.
This is different from llen.

What about functions defined over
our own recursive data types?
• len:

Tripakis Logic and Computation, Fall 2019 13

ACL2S !>QUERY :doc len
ACL2::LEN -- ACL2 Sources
Parents: ACL2::LISTS and ACL2::ACL2-BUILT-INS.

Length of a list

Len returns the length of a list.

A Common Lisp function that is appropriate for both strings and
proper lists is length; see [length]. The guard for len is t.

(Low-level implementation note. ACL2 provides a highly-optimized
implementation of len, which is tail-recursive and fixnum-aware,
that differs from its simple ACL2 definition.)

Function: <len>

(defun len (x)
(declare (xargs :guard t))
(if (consp x) (+ 1 (len (cdr x))) 0))

We can use the theorem:
(consp x) =>

(len x) = 1 + (len (cdr x))

What about functions defined over
our own recursive data types?
• len:

Tripakis Logic and Computation, Fall 2019 14

(defdata UnaryOp '~)
(defdata BinaryOp (enum (list '& '+)))
(defdata Formula (oneof boolean

(list UnaryOp Formula)
(list Formula BinaryOp Formula)))

(definec eval-formula (f :Formula) :bool
(cond ((booleanp f) f)

((UnaryOpp (car f)) (not (eval-formula (second f))))
((equal (second f) '&) (and (eval-formula (first f))

(eval-formula (third f))))
(t (or (eval-formula (first f))

(eval-formula (third f))))))

Would len work as a measure function for eval-formula?

What about functions defined over
our own recursive data types?
• acl2-count:

Tripakis Logic and Computation, Fall 2019 15

(check= (acl2-count t) 0)
(check= (acl2-count nil) 0)
(check= (acl2-count '~) 0)
(check= (Formulap '(~ t)) t)
(check= (acl2-count '(~ t)) 2)
(check= (Formulap '(nil & t)) t)
(check= (acl2-count '(nil & t)) 3)

(check= (len '(1 2)) 2)
(check= (acl2-count '(1 2)) 5)

acl2-count is a predefined function.

What about functions defined over
our own recursive data types?
• acl2-count:

Tripakis Logic and Computation, Fall 2019 16

ACL2S !>QUERY :doc acl2-count

A commonly used measure for justifying recursion

(Acl2-count x) returns a nonnegative integer that indicates the
``size'' of its argument x.

Function: <acl2-count>

(defun acl2-count (x)
(declare (xargs :guard t))
(if (consp x)

(+ 1 (acl2-count (car x))
(acl2-count (cdr x)))

(if (rationalp x)
(if (integerp x)

(integer-abs x)
(+ (integer-abs (numerator x))

(denominator x)))
(if (complex/complex-rationalp x)

(+ 1 (acl2-count (realpart x))
(acl2-count (imagpart x)))

(if (stringp x) (length x) 0)))))

We can use the theorem:
(consp x) =>
(acl2-count x) =
(+ 1 (acl2-count (car x))

(acl2-count (cdr x))))))

Undecidability

Tripakis Logic and Computation, Fall 2019 17

Alan Turing (1912 – 1954)

Tripakis Logic and Computation, Fall 2019 18

• Logician, computer scientist, cryptanalyst,
philosopher, …

• Invented Turing Machines, launching
computer science

• Helped break the Enigma machine used by
the Nazis during WW2

• Prosecuted in 1952 for homosexual acts
(“gross indecency”)
 Forced to choose between prison and

chemical castration – chose the latter
 In 2019 there’s still “conversion therapy”

• Died in 1954
• Pardoned in 2013
• Will be depicted in next £50 note

Undecidability of the halting
problem of Turing machines

Tripakis Logic and Computation, Fall 2019 19

• Undecidability of the halting problem of Turing
machines without knowing Turing machines

Termination, complexity, and
measure functions

Tripakis Logic and Computation, Fall 2019 20

Big-O notation, termination, and
measure functions
• What does it mean if the running time for a program is

, where is the size of the input?
 It means that:

1. The program terminates.
2. There is a constant such that the program terminates in at most

ଶ steps.

• Complexity analysis is a refinement of termination: not
only we want to show that our program terminates, but
we also want to compute how many steps it will require
to compute, in the worst case.

• If a measure function for (f n) is (m n) = n, does this
mean that f has linear time complexity, i.e., ?

Tripakis Logic and Computation, Fall 2019 21

Big-O notation, termination, and
measure functions
• If a measure function for (f n) is (m n) = n, does this

mean that f has linear time complexity, i.e., ?
• No!

 Measure functions bound the depth of the recursion
tree, but not its breadth.

• Example: the Fibonacci function:

• See 24-fib.lisp

Tripakis Logic and Computation, Fall 2019 22

(definec-no-test fib (n :nat) :nat
(if (< n 2)

n
(+ (fib (- n 1))

(fib (- n 2)))))

Limitations of measure functions
• Are there functions that terminate, but we cannot

prove that they do with measure functions?
• Yes:
• Example: the Ackermann function:

• Terminating, but not primitive recursive!
 Most “reasonable” computable (terminating) functions are

primitive-recursive.

• To prove that it terminates:
 Use lexicographic order on (m, n) pairs.

Tripakis Logic and Computation, Fall 2019 23

(definec-no-test ack (m :nat n :nat) :pos
(cond ((= m 0) (+ 1 n))

((= n 0) (ack (- m 1) 1))
(t (ack (- m 1) (ack m (- n 1))))))

Termination: remarks

• No widely used programming language offers
termination analysis.
 Some software model checking tools do.
 Checking termination automatically is impossible in

general, but is possible in some cases!
 The above verification tools try to prove (or disprove)

termination, and return:
• Either “I proved that it terminates”
• Or “I proved that it doesn’t terminate”
• Or “I don’t know”.

 This is an active area of research.
 Take CS 4830 if you want to learn more.

Tripakis Logic and Computation, Fall 2019 24

Termination: remarks

• Non-termination is sometimes useful and desirable:
 Reactive systems: systems that continuously react to

environment inputs, without terminating.
 Communication protocols (TCP/IP, …), embedded

software (avionics etc. controllers, …), web servers,
robots, …

 Even for reactive systems, termination is important:
• An execution of the reactive system goes on forever, but one

step in that execution (i.e., a single “reaction”) must terminate!

 Take CS 4830 if you want to learn more about these
systems.

Tripakis Logic and Computation, Fall 2019 25

Next time

• Induction

Tripakis Logic and Computation, Fall 2019 26

