
Equational Reasoning

Pete Manolios

Northeastern

Logic and Computation, 10/28/2019

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Complexity Analysis
(definec sum (k :nat) :nat
 (if (= k 0)
 0
 (+ k (sum (- k 1)))))

What is the

time complexity?

Input (k) Aritmetic Ops Complexity (k) Input Size (n) Complexity (n)

2 2(2) O(k) 1 O(2n)

32 2(32) 5

1024 2(1024) 10

32768 2(32768) 15

1048576 2(k) 20

k

∑
i=0

i

Exponential time because k requires log(k) bits to represent

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Complexity Analysis
With SAT, no one has come up with a polynomial time algorithm

What about sum? Can we do better?

(definec fsum (k :nat) :nat
 (/ (* k (+ k 1)) 2))

Input (k) Aritmetic Ops Complexity (k) Input Size (n) Complexity (n)

2 3 O(1) 1 O(1)

32 3 5

1024 3 10

32768 3 15

1048576 3 20

Constant time, so exponentially better than sum!

What is the

time complexity?

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Reasoning About Arithmetic

We want to prove that a more clever version is equivalent

(implies (natp k)
 (equal (sum k)
 (fsum k)))

How? By “mathematical induction” (think about 1800)

(definec sum (k :nat) :nat
 (if (= k 0)
 0
 (+ k (sum (- k 1)))))

(definec fsum (k :nat) :nat
 (/ (* k (+ k 1)) 2))

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Induction Proof

Base case:

(natp k) ∧ k = 0 ⇒ (sum k) = (/ (* k k+1) 2)

Induction step:

 (natp k) ∧ k ≠ 0 ∧
 [(natp k-1) ⇒ (sum k-1) = (/ (* k-1 k) 2)]
⇒ (sum k) = (/ (* k k+1) 2)

(definec sum (k :nat) :nat
 (if (= k 0)
 0
 (+ k (sum (- k 1)))))

(definec fsum (k :nat) :nat
 (/ (* k (+ k 1)) 2))

Conjecture: (natp k) ⇒ (sum k) = (fsum k)

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

ACL2s Demo
Show that sum takes exponential time

The importance of tail recursion

fsum to the rescue

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Lessons Learned
Algorithmic complexity is vitally important: consider big-data, Web

Take algorithms as soon as possible

As a computer scientist, always think about complexity

But, correctness is most important: fast, but wrong is not good

Planes, trains and automobiles (not the movie) crash

Wrong simulation results for weather, nuclear testing, experiments…

Correctness is mostly what we care about in this class

Powerful idea: define correctness using simplest definitions (the spec)

Then define efficient implementation and prove equivalence

Allows one to reason using the spec, but execute using efficient code

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Comparison with C & Java
Suppose that we write this code in an imperative language like C
or Java

Let’s see a DEMO

What happened?

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Limited Precision!
C, Java, etc. do not have arbitrary precision arithmetic

So sum, fsum are not equivalent!

We get a negative number because most languages use fixed-bit
arithmetic

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Finding Bugs
You could have tested your program 1K times and not found errors

We knew what we were looking for and so we found an error

Is this a problem in practice? Yes. See http://
googleresearch.blogspot.no/2006/06/extra-extra-read-all-about-it-
nearly.html

http://googleresearch.blogspot.no/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.no/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.no/2006/06/extra-extra-read-all-about-it-nearly.html

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Reasoning About C/Java
Can we reason about C/Java code?

We don’t have a theorem prover for these languages

But, we can reason about them!

Use ACL2s to model arithmetic in C/Java

Let’s say that the spec is that fsum should be equal to sum

We can use property-based testing

DEMO

