Equational Reasoning

Pete Manolios
Northeastern

Logic and Computation, 10/28/2019

Complexity Analysis

(definec sum (k :nat) :nat What is the

k
[(if (; k @) time complexity?
i=0
(+ k Csum (- k 1)))))

Input (k) Aritmetic Ops Complexity (k) Input Size (n) Complexity (n)

32

1024

32768

1048576

Exponential time because k requires log(k) bits to represent

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Complexity Analysis
» With SAT, no one has come up with a polynomial time algorithm

» What about sum? Can we do better?

(definec fsum (k :nat) :nat What is the
¢/ (* k (+ k1)) 2)) time complexity?

Input (k) Aritmetic Ops Complexity (k) Input Size (n) Complexity (n)

2

32

1024

32768

1048576

Constant time, so exponentially better than sum!

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Reasoning About Arithmetic

(definec sum (k :nat) :nat (definec fsum (k :nat) :nat

(if (= k 0) / *k (+ k1)) 2))
0

(+ k Csum (- k 1)))))

» We want to prove that a more clever version is equivalent
(implies (natp k)
(equal (sum k)
(fsum k)))

» How? By “mathematical induction” (think about 1800)

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Induction Proof

(definec sum (k :nat) :nat (definec fsum (k :nat) :nat

(if (= k @) ¢/ k(+ k1)) 2))
0

(+ k Csum (- k 1)))))
Conjecture: (natp k) = (sum k) = (fsum k)

» Base case:
(natp k) Ak =0 = (sum k) = (/ (* k k+1) 2)
» Induction step:
(natp k) A k = @ A
[(natp k-1) = (sum k-1) = (/ (* k-1 k) 2)]
= (sum k) = (/ (* k k+1) 2)

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

ACL2s Demo

» Show that sum takes exponential time
» The importance of tail recursion

» fsum to the rescue

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Lessons Learned

» Algorithmic complexity is vitally important: consider big-data, Web
» Take algorithms as soon as possible
» As a computer scientist, always think about complexity
» But, correctness is most important: fast, but wrong is not good
» Planes, trains and automobiles (not the movie) crash
» Wrong simulation results for weather, nuclear testing, experiments...

» Correctness is mostly what we care about in this class
» Powerful idea: define correctness using simplest definitions (the spec)
» Then define efficient implementation and prove equivalence

» Allows one to reason using the spec, but execute using efficient code

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Comparison with C & Java

» Suppose that we write this code in an imperative language like C
or Java

» Let’s see a DEMO
» What happened?

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Limited Precision!

» C, Java, etc. do not have arbitrary precision arithmetic
» SO sum, fsum are not equivalent!

» We get a negative number because most languages use fixed-bit
arithmetic

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Finding Bugs

» You could have tested your program 1K times and not found errors
» We knew what we were looking for and so we found an error

» |s this a problem in practice? Yes. See http://
googleresearch.blogspot.no/2006/06/extra-extra-read-all-about-it-
nearly.html

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

http://googleresearch.blogspot.no/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.no/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.no/2006/06/extra-extra-read-all-about-it-nearly.html

Reasoning About C/Java

» Can we reason about C/Java code?
» We don’t have a theorem prover for these languages
» But, we can reason about them!
» Use ACL2s to model arithmetic in C/Java
» Let’s say that the spec is that fsum should be equal to sum

» We can use property-based testing
» DEMO

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

