
Logic and Computation – CS 2800
Fall 2019

Lecture 21
Measure functions

Stavros Tripakis



Outline

• The hardness of proving theorems
• The hardness of checking termination
• Measure functions

Tripakis Logic and Computation, Fall 2019 2



The hardness of proving 
theorems

Tripakis Logic and Computation, Fall 2019 3



Fermat’s last theorem

• For all positive integers , if then 

• [Fermat 1637]: “I have a truly marvelous proof of 
this proposition which this margin is too narrow to 
contain.”

• Mathematicians were trying in vain to prove 
Fermat’s claim for centuries!

• … until it was finally proved by Andrew Wiles in 
1995.

Tripakis Logic and Computation, Fall 2019 4



Can we express Fermat’s last 
theorem in ACL2s?
• Sure we can:

• Some theorems are very difficult to prove
• Proving theorems automatically is generally impossible 

(undecidable)

Tripakis Logic and Computation, Fall 2019 5

(defunc f (x y z n)
:input-contract (and (posp x) (posp y) 

(posp z) (natp n) (> n 2))
:output-contract (booleanp (f x y z n))
(not (equal (+ (expt x n) (expt y n))

(expt z n))))

(thm (implies ic (f x y z n)))



Admitting functions in ACL2s

• What if we just tried to define the function, but changed the 
output contract to this:

• Proving contracts can be as hard as proving theorems
• Proving contracts automatically is generally impossible 

(undecidable)
• In order for ACL2s to “admit” our function definitions, it needs to 

prove contracts: this can be very hard, undecidable in general

Tripakis Logic and Computation, Fall 2019 6

(defunc f (x y z n)
:input-contract (and (posp x) (posp y) 

(posp z) (natp n) (> n 2))
:output-contract (equal (f x y z n) t)
(not (equal (+ (expt x n) (expt y n))

(expt z n))))



The hardness of checking 
termination

Tripakis Logic and Computation, Fall 2019 7



A simple program: what does it do?

int x := read an integer number > 1;

while x > 1 {
if x is even

x := x / 2;
else

x := 3*x + 1;
}

Collatz conjecture: 
The program terminates for every input.

Open problem in mathematics.

Run starting at 31: 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 
233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 
1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 
9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 
10 5 16 8 4 2



Can we express the Collatz
conjecture in ACL2s?
• Yes:

• In order to admit this function, ACL2s has to prove that 
it terminates

• Proving that it terminates means proving the Collatz
conjecture

Tripakis Logic and Computation, Fall 2019 9

(defunc collatz (x)
:input-contract (and (natp x) (> x 1))
:output-contract (natp (collatz x))
(cond
((equal x 2) 0)
((evenp x) (collatz (/ x 2)))
(t (collatz (+ (* 3 x) 1)))))



Proving termination

• Checking/proving termination is generally undecidable
• But ACL2s seems to do it all the time!
• This is not a contradiction: ACL2s manages to prove 

termination in many cases, but cannot prove it in all 
cases!
• For example, try to see what happens when you try to admit 

the Collatz function

• How does ACL2s prove termination?
• ACL2s uses some advanced techniques that we will not study

• How can we prove termination?
• Measure functions!

Tripakis Logic and Computation, Fall 2019 10



Measure functions

Tripakis Logic and Computation, Fall 2019 11



Measure functions: basic idea

• If a program terminates, then it must run for a finite number 
of steps.

• How many steps?
• Well, that depends on the input of the program.

• E.g., working with a longer list will take more time than working 
with a shorter list

• In order for program to terminate, every recursive call must 
“get us closer to the goal”, i.e., “closer to termination”.

• Measure functions capture this intuition:
• The measure is a natural number.
• The measure must decrease on every recursive call.
• Eventually the measure must reach 0, and the program terminates.

Tripakis Logic and Computation, Fall 2019 12



Example

• Why does the following function terminate?

• Measure function?

Tripakis Logic and Computation, Fall 2019 13

(definec aapp (x :tl y :tl) :tl
(if (endp x) y

(cons (first x) (aapp (rest x) y))))

(definec m (x :tl y :tl) :nat
???



Example

• Why does the following function terminate?

• Measure function?

Tripakis Logic and Computation, Fall 2019 14

(definec aapp (x :tl y :tl) :tl
(if (endp x) y

(cons (first x) (aapp (rest x) y))))

(definec m (x :tl y :tl) :nat
(len x))



Example

• Why does the following function terminate?

• In ACL2s you have to write it like this:

Tripakis Logic and Computation, Fall 2019 15

(definec aapp (x :tl y :tl) :tl
(if (endp x) y

(cons (first x) (aapp (rest x) y))))

(definec m (x :tl y :tl) :nat
(declare (ignorable y))
(len x))



Example

• To show that m is a valid measure function we have 
to show that it decreases on every recursive call, 
under the conditions that led to that call.

• There’s just one recursive call, so we have to show:

Tripakis Logic and Computation, Fall 2019 16

(definec aapp (x :tl y :tl) :tl
(if (endp x) y
(cons (first x) 

(aapp (rest x) y))))

(definec m (x :tl y :tl) :nat
(len x))

(tlp x) & (tlp y) & (not (endp x))
=>

(m (rest x) y) < (m x y)



Example

• We have to show:

• We use equational reasoning!

Tripakis Logic and Computation, Fall 2019 17

(definec m (x :tl y :tl) :nat
(len x))

(tlp x) & (tlp y) & (not (endp x))
=>

(m (rest x) y) < (m x y)

C1. (tlp x) C2. (tlp y)
C3. (not (endp x))
Goal: (m (rest x) y) < (m x y)

Proof:
(m (rest x) y)
= { def m }
(len (rest x))
< { some lemma about len, C1, C3 }
(len x)
= { def m }
(m x y)



Example

• The lemma about len:

Tripakis Logic and Computation, Fall 2019 18

(definec len (x :tl) :nat
(if (endp x) 0

(+ 1 (len (rest x)))))

(tlp x) & (not (endp x)) => (len (rest x)) < (len x)

C1. (tlp x)
C2. (not (endp x))
Goal: (len (rest x)) < (len x)

Proof:
(len x)
= { def len, C2 }
(+ 1 (len (rest x)))
> { (len (rest x)) is a nat, arithmetic }
(len (rest x))



Measure functions: definition

• A function m is a valid measure function for another 
function f if all conditions below are satisfied:
1. m is defined over exactly the same parameters as f
2. m has exactly the same input contract as f
3. The output contract of m states that m returns a nat
4. m is admissible
5. On every recursive call to f, if we call m with the same 

arguments as f on that recursive call, and under the 
conditions that led to that recursive call, then m 
decreases.

Tripakis Logic and Computation, Fall 2019 19



Examples

Tripakis Logic and Computation, Fall 2019 20



Example 1

• Measure function?
• (m x) = (len x)
• Proof obligations?
• Same as for aapp!

Tripakis Logic and Computation, Fall 2019 21

(definec rrev (x :tl) :tl
(if (endp x)

nil
(aapp (rrev (rest x)) (list (first x)))))



Next time

• More about measure functions
• Undecidability 

Tripakis Logic and Computation, Fall 2019 22


