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Outline

• The importance of termination
• The definitional principle
• Admissibility
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Recall the definitional axioms

• When we define a function:

• we get the axioms:
— IC   =>  ( (f x1 x2 …) = body )
— IC   =>   OC
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(defunc f (x1 x2 …)
:input-contract IC
:output-contract OC
(body))

What gives us the right 
to obtain these axioms?



In fact, we should be careful

• Consider this function definition:

• Do you see a problem with this function?
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(defunc f (x)
:input-contract (natp x)
:output-contract (natp (f x))
(+ 1 (f x)))

Non-terminating!
(f x) = (+ 1 (f x)) = (+ 1 (+ 1 (f x))) = …



In fact, we should be careful

• Let’s suppose we admit this function:

• Then we would get these two axioms:
— (natp x)   =>  (f x) = (+ 1 (f x))
— (natp x)   =>  (natp (f x))
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(defunc f (x)
:input-contract (natp x)
:output-contract (natp (f x))
(+ 1 (f x)))

Are these axioms anodyne (innocuous)?



Unsoundness!

• These axioms lead to unsoundness!
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Axiom1: (natp x)   =>  (f x) = (+ 1 (f x))
Axiom2: (natp x)   =>  (natp (f x))

Derived Context:
D1. (f 0) = 1 + (f 0) { Axiom1, (natp 0), MP }
D2. (natp (f 0)) { Axiom2, (natp 0), MP }
D3. 0 = 1 { D2, arithmetic }
D4. false { D3, arithmetic }

Goal: false

Proof:
false { D4 }



Take-home message 1

• Some non-terminating function definitions 
introduce unsoundness

• We cannot just accept any function definition
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Question 

• Does every non-terminating function definition 
introduce unsoundness?
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Question 

• Does every non-terminating function definition 
introduce unsoundness?

• No, e.g.:

• (f x) = (f x) already follows from the axiom of 
reflexivity of equality
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(defunc f (x)
:input-contract (natp x)
:output-contract (natp (f x))
(f x))



Another question 

• Is every terminating function definition guaranteed 
not to introduce unsoundness?
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Another question 

• Is every terminating function definition guaranteed 
not to introduce unsoundness?

• No! E.g.:

• Then we would get the axiom: 
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(defunc f (x)
:input-contract (natp x)
:output-contract (natp (f x))
y)

(natp x) => (f x) = y



Unsoundness!

• This axiom again leads to unsoundness!
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Axiom: (natp x) => (f x) = y

Goal: false

Proof:
0
= { instantiate Axiom with ((x 4) (y 0)) }
(f 4)
= { instantiate Axiom with ((x 4) (y 1)) }
1



“global” / undefined variables are 
bad
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(defunc f (x)
:input-contract (natp x)
:output-contract (natp (f x))
y)

The problem here was that we allowed a 
“global” (undefined) variable y in the body of f.



Take-home message 2

• Some non-terminating function definitions introduce 
unsoundness

• Even some terminating function definitions may 
introduce unsoundness

• We cannot just accept any function definition

• We need a set of admission rules that guarantee that if 
we admit a function, then our logic remains sound
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Admissibility: the definitional 
principle
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Admissibility 

• A function definition is admissible provided all 
following conditions are satisfied:
1. f is a new function symbol, e.g., there are no existing axioms 

about f (so, we have to maintain a history of function 
definitions)

2. The xi are distinct variable symbols – why?
3. body is a term, possibly using f recursively as a function 

symbol, mentioning no other variables freely other than the 
xi

4. The function is terminating on all inputs satisfying IC
5. IC => OC is a theorem
6. The body contracts hold under the assumption that IC holds
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(defunc f (x1 x2 …)
:input-contract IC
:output-contract OC
(body))



The definitional axioms revisited

• Only when the definition is admissible

• we have the right to these axioms:
— IC   =>  ( (f x1 x2 …) = body )
— IC   =>   OC

o In fact, IC => OC is not an axiom but a theorem, since we must 
prove it before we admit the function (c.f. admissibility 
condition 5)
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(defunc f (x1 x2 …)
:input-contract IC
:output-contract OC
(body))



Is checking admissibility easy?
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Is checking admissibility easy?

• No!
• In fact it is very hard! Very, very hard …

• Checking termination is generally undecidable
• Proving theorems is also generally undecidable

• We will talk more about these things next time
• For now, let’s just do some examples
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Examples
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Example 1

• Is this definition admissible?

• Yes!
• Let’s go over all 6 conditions one by one.
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(definec f (x :nat) :int
(if (equal x 0)

1
(+ 1 (f (- x 1)))))

1. f is a new function symbol, e.g., there are no existing axioms 
about f (so, we have to maintain a history of function 
definitions)

2. The xi are distinct variable symbols 
3. body is a term, possibly using f recursively as a function 

symbol, mentioning no other variables freely other than the xi
4. The function is terminating on all inputs satisfying IC

5. IC => OC is a theorem
6. The body contracts hold under the assumption that IC holds



Example 2

• Is this definition admissible?

• No!
• If y is negative, function doesn’t return a nat
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(definec f (x :tl y :int) :nat
(if (endp x)

y
(+ 1 (f (rest x) y))))

1. f is a new function symbol, e.g., there are no existing axioms 
about f (so, we have to maintain a history of function 
definitions)

2. The xi are distinct variable symbols 
3. body is a term, possibly using f recursively as a function 

symbol, mentioning no other variables freely other than the xi
4. The function is terminating on all inputs satisfying IC

5. IC => OC is a theorem
6. The body contracts hold under the assumption that IC holds



Example 3

• Is this definition admissible?

• No!
• Non-terminating, e.g., when y=-1
• Note that (rest nil) = (cdr nil) = nil
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(definec f (x :tl y :int) :tl
(if (equal y 0)
x
(f (rest x) (- y 1))))

1. f is a new function symbol, e.g., there are no existing axioms 
about f (so, we have to maintain a history of function 
definitions)

2. The xi are distinct variable symbols 
3. body is a term, possibly using f recursively as a function 

symbol, mentioning no other variables freely other than the xi
4. The function is terminating on all inputs satisfying IC

5. IC => OC is a theorem
6. The body contracts hold under the assumption that IC holds



Example 4

• Is this definition admissible?

• No!
• Uses (“global”) free variable y in the body
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(definec f (x :nat) :int
(cond ((equal x 0) 1)

((< x 0) (f -1))
(t (+ 1 (f (- y 1))))))

1. f is a new function symbol, e.g., there are no existing axioms 
about f (so, we have to maintain a history of function 
definitions)

2. The xi are distinct variable symbols 
3. body is a term, possibly using f recursively as a function 

symbol, mentioning no other variables freely other than the xi
4. The function is terminating on all inputs satisfying IC

5. IC => OC is a theorem
6. The body contracts hold under the assumption that IC holds



Example 5

• Is this definition admissible?

• Yes!
• Note that middle case is “dead code” – why?
• Let’s go over all 6 conditions one by one.
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(definec f (x :nat y :nat) :int
(cond ((equal x 0) 1)

((< x 0) (f -1 (/ x y)))
(t (+ 1 (f (- x 1) y)))))

1. f is a new function symbol, e.g., there are no existing axioms 
about f (so, we have to maintain a history of function 
definitions)

2. The xi are distinct variable symbols 
3. body is a term, possibly using f recursively as a function 

symbol, mentioning no other variables freely other than the xi
4. The function is terminating on all inputs satisfying IC

5. IC => OC is a theorem
6. The body contracts hold under the assumption that IC holds



Example 6

• Is this definition admissible?

• Yes!
• The list x gets longer, but y decreases and 

eventually reaches 0
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(definec f (x :tl y :nat) :tl
(cond ((equal y 0) nil)

((endp x) (list y))
(t (f (cons y x) (- y 1)))))

1. f is a new function symbol, e.g., there are no existing axioms 
about f (so, we have to maintain a history of function 
definitions)

2. The xi are distinct variable symbols 
3. body is a term, possibly using f recursively as a function 

symbol, mentioning no other variables freely other than the xi
4. The function is terminating on all inputs satisfying IC

5. IC => OC is a theorem
6. The body contracts hold under the assumption that IC holds



Next time

• The hardness of termination
• The hardness of proving theorems
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