Logic and Computation – CS 2800 Fall 2019

Lecture 20

The definitional principle

Stavros Tripakis

Northeastern University Khoury College of Computer Sciences

Outline

- The importance of termination
- The definitional principle
- Admissibility

Recall the definitional axioms

• When we define a function:

```
(defunc f (x1 x2 ...)
    :input-contract IC
    :output-contract OC
    (body))
```

- we get the axioms:
 - IC => ((f x1 x2 ...) = body)

- IC => OC

What gives us the right to obtain these axioms?

In fact, we should be careful

• Consider this function definition:

```
(defunc f (x)
    :input-contract (natp x)
    :output-contract (natp (f x))
    (+ 1 (f x)))
```

• Do you see a problem with this function?

Non-terminating! (f x) = (+ 1 (f x)) = (+ 1 (+ 1 (f x))) = ...

4

In fact, we should be careful

• Let's suppose we admit this function:

```
(defunc f (x)
    :input-contract (natp x)
    :output-contract (natp (f x))
    (+ 1 (f x)))
```

- Then we would get these two axioms:
 - (natp x) => (f x) = (+ 1 (f x))
 - (natp x) => (natp (f x))

Are these axioms anodyne (innocuous)?

Unsoundness!

• These axioms lead to unsoundness!

```
Axiom1: (natp x) => (f x) = (+ 1 (f x))
Axiom2: (natp x) => (natp (f x))
Derived Context:
D1. (f \ 0) = 1 + (f \ 0) \{ Axiom1, (natp \ 0), MP \}
D2. (natp (f 0)) { Axiom2, (natp 0), MP }
D3. 0 = 1 \{ D2, arithmetic \}
D4. false { D3, arithmetic }
Goal: false
Proof:
false { D4 }
```

Take-home message 1

- Some non-terminating function definitions introduce unsoundness
- We cannot just accept any function definition

Question

• Does **every** non-terminating function definition introduce unsoundness?

Question

- Does every non-terminating function definition introduce unsoundness?
- No, e.g.:

```
(defunc f (x)
    :input-contract (natp x)
    :output-contract (natp (f x))
    (f x))
```

 (f x) = (f x) already follows from the axiom of reflexivity of equality

Another question

 Is every terminating function definition guaranteed not to introduce unsoundness?

Another question

 Is every terminating function definition guaranteed not to introduce unsoundness?

• Then we would get the axiom:

$$(natp x) => (f x) = y$$

Unsoundness!

• This axiom again leads to unsoundness!

```
Axiom: (natp x) => (f x) = y
Goal: false
Proof:
0
= { instantiate Axiom with ((x 4) (y 0)) }
(f 4)
= { instantiate Axiom with ((x 4) (y 1)) }
1
```

"global" / undefined variables are bad

The problem here was that we allowed a "global" (undefined) variable y in the body of f.

```
(defunc f (x)
    :input-contract (natp x)
    :output-contract (natp (f x))
    y)
```

Take-home message 2

- Some non-terminating function definitions introduce unsoundness
- Even some terminating function definitions may introduce unsoundness
- We cannot just accept any function definition
- We need a set of **admission rules** that guarantee that if we admit a function, then our logic remains sound

Admissibility: the definitional principle

Admissibility

```
(defunc f (x1 x2 ...)
    :input-contract IC
    :output-contract OC
    (body))
```

- A function definition is admissible provided all following conditions are satisfied:
 - f is a new function symbol, e.g., there are no existing axioms about f (so, we have to maintain a history of function definitions)
 - 2. The xi are distinct variable symbols why?
 - 3. body is a term, possibly using f recursively as a function symbol, mentioning no other variables freely other than the xi
 - 4. The function is terminating on all inputs satisfying IC
 - 5. IC => OC is a theorem
 - 6. The body contracts hold under the assumption that IC holds

The definitional axioms revisited

Only when the definition is admissible

```
(defunc f (x1 x2 ...)
:input-contract IC
:output-contract OC
(body))
```

- we have the right to these axioms:
 - IC => ((f x1 x2 ...) = body)

$$-$$
 IC => OC

 In fact, IC => OC is not an axiom but a theorem, since we must prove it before we admit the function (c.f. admissibility condition 5)

Is checking admissibility easy?

Is checking admissibility easy?

- No!
- In fact it is very hard! Very, very hard ...
- Checking termination is generally undecidable
- Proving theorems is also generally **undecidable**
- We will talk more about these things next time
- For now, let's just do some examples

- 1. f is a new function symbol, e.g., there are no existing axioms about f (so, we have to maintain a history of function definitions)
- 2. The xi are distinct variable symbols
- 3. body is a term, possibly using f recursively as a function symbol, mentioning no other variables freely other than the xi
- 4. The function is terminating on all inputs satisfying IC
- 5. IC => OC is a theorem
- 6. The body contracts hold under the assumption that IC holds

```
(definec f (x :nat) :int
(if (equal x 0)
1
(+ 1 (f (- x 1)))))
```

- Yes!
- Let's go over all 6 conditions one by one.

- 1. f is a new function symbol, e.g., there are no existing axioms about f (so, we have to maintain a history of function definitions)
- 2. The xi are distinct variable symbols
- 3. body is a term, possibly using f recursively as a function symbol, mentioning no other variables freely other than the xi
- 4. The function is terminating on all inputs satisfying IC
- 5. IC => OC is a theorem
- 6. The body contracts hold under the assumption that IC holds

- No!
- If y is negative, function doesn't return a nat

- 1. f is a new function symbol, e.g., there are no existing axioms about f (so, we have to maintain a history of function definitions)
- 2. The xi are distinct variable symbols
- 3. body is a term, possibly using f recursively as a function symbol, mentioning no other variables freely other than the xi
- 4. The function is terminating on all inputs satisfying IC
- 5. IC => OC is a theorem

6.

The body contracts hold under the assumption that ${\tt IC}$ holds

- No!
- Non-terminating, e.g., when y=-1
- Note that (rest nil) = (cdr nil) = nil

- 1. f is a new function symbol, e.g., there are no existing axioms about f (so, we have to maintain a history of function definitions)
- 2. The xi are distinct variable symbols
- 3. body is a term, possibly using f recursively as a function symbol, mentioning no other variables freely other than the xi
- 4. The function is terminating on all inputs satisfying IC
- 5. IC => OC is a theorem
- 6. The body contracts hold under the assumption that IC holds

- No!
- Uses ("global") free variable y in the body

- 1. f is a new function symbol, e.g., there are no existing axioms about f (so, we have to maintain a history of function definitions)
- 2. The xi are distinct variable symbols
- 3. body is a term, possibly using f recursively as a function symbol, mentioning no other variables freely other than the xi
- 4. The function is terminating on all inputs satisfying IC
- 5. IC => OC is a theorem
- 6. The body contracts hold under the assumption that IC holds

- Yes!
- Note that middle case is "dead code" why?
- Let's go over all 6 conditions one by one.

- 1. f is a new function symbol, e.g., there are no existing axioms about f (so, we have to maintain a history of function definitions)
- 2. The xi are distinct variable symbols
- 3. body is a term, possibly using f recursively as a function symbol, mentioning no other variables freely other than the xi
- 4. The function is terminating on all inputs satisfying IC
- 5. IC => OC is a theorem
- 6. The body contracts hold under the assumption that IC holds

- Yes!
- The list x gets longer, but y decreases and eventually reaches 0

Next time

- The hardness of termination
- The hardness of proving theorems