
Logic and Computation – CS 2800
Fall 2019

Lecture 20
The definitional principle

Stavros Tripakis

Outline

• The importance of termination
• The definitional principle
• Admissibility

Tripakis Logic and Computation, Fall 2019 2

Recall the definitional axioms

• When we define a function:

• we get the axioms:
— IC => ((f x1 x2 …) = body)
— IC => OC

Tripakis Logic and Computation, Fall 2019 3

(defunc f (x1 x2 …)
:input-contract IC
:output-contract OC
(body))

What gives us the right
to obtain these axioms?

In fact, we should be careful

• Consider this function definition:

• Do you see a problem with this function?

Tripakis Logic and Computation, Fall 2019 4

(defunc f (x)
:input-contract (natp x)
:output-contract (natp (f x))
(+ 1 (f x)))

Non-terminating!
(f x) = (+ 1 (f x)) = (+ 1 (+ 1 (f x))) = …

In fact, we should be careful

• Let’s suppose we admit this function:

• Then we would get these two axioms:
— (natp x) => (f x) = (+ 1 (f x))
— (natp x) => (natp (f x))

Tripakis Logic and Computation, Fall 2019 5

(defunc f (x)
:input-contract (natp x)
:output-contract (natp (f x))
(+ 1 (f x)))

Are these axioms anodyne (innocuous)?

Unsoundness!

• These axioms lead to unsoundness!

Tripakis Logic and Computation, Fall 2019 6

Axiom1: (natp x) => (f x) = (+ 1 (f x))
Axiom2: (natp x) => (natp (f x))

Derived Context:
D1. (f 0) = 1 + (f 0) { Axiom1, (natp 0), MP }
D2. (natp (f 0)) { Axiom2, (natp 0), MP }
D3. 0 = 1 { D2, arithmetic }
D4. false { D3, arithmetic }

Goal: false

Proof:
false { D4 }

Take-home message 1

• Some non-terminating function definitions
introduce unsoundness

• We cannot just accept any function definition

Tripakis Logic and Computation, Fall 2019 7

Question

• Does every non-terminating function definition
introduce unsoundness?

Tripakis Logic and Computation, Fall 2019 8

Question

• Does every non-terminating function definition
introduce unsoundness?

• No, e.g.:

• (f x) = (f x) already follows from the axiom of
reflexivity of equality

Tripakis Logic and Computation, Fall 2019 9

(defunc f (x)
:input-contract (natp x)
:output-contract (natp (f x))
(f x))

Another question

• Is every terminating function definition guaranteed
not to introduce unsoundness?

Tripakis Logic and Computation, Fall 2019 10

Another question

• Is every terminating function definition guaranteed
not to introduce unsoundness?

• No! E.g.:

• Then we would get the axiom:

Tripakis Logic and Computation, Fall 2019 11

(defunc f (x)
:input-contract (natp x)
:output-contract (natp (f x))
y)

(natp x) => (f x) = y

Unsoundness!

• This axiom again leads to unsoundness!

Tripakis Logic and Computation, Fall 2019 12

Axiom: (natp x) => (f x) = y

Goal: false

Proof:
0
= { instantiate Axiom with ((x 4) (y 0)) }
(f 4)
= { instantiate Axiom with ((x 4) (y 1)) }
1

“global” / undefined variables are
bad

Tripakis Logic and Computation, Fall 2019 13

(defunc f (x)
:input-contract (natp x)
:output-contract (natp (f x))
y)

The problem here was that we allowed a
“global” (undefined) variable y in the body of f.

Take-home message 2

• Some non-terminating function definitions introduce
unsoundness

• Even some terminating function definitions may
introduce unsoundness

• We cannot just accept any function definition

• We need a set of admission rules that guarantee that if
we admit a function, then our logic remains sound

Tripakis Logic and Computation, Fall 2019 14

Admissibility: the definitional
principle

Tripakis Logic and Computation, Fall 2019 15

Admissibility

• A function definition is admissible provided all
following conditions are satisfied:
1. f is a new function symbol, e.g., there are no existing axioms

about f (so, we have to maintain a history of function
definitions)

2. The xi are distinct variable symbols – why?
3. body is a term, possibly using f recursively as a function

symbol, mentioning no other variables freely other than the
xi

4. The function is terminating on all inputs satisfying IC
5. IC => OC is a theorem
6. The body contracts hold under the assumption that IC holds

Tripakis Logic and Computation, Fall 2019 16

(defunc f (x1 x2 …)
:input-contract IC
:output-contract OC
(body))

The definitional axioms revisited

• Only when the definition is admissible

• we have the right to these axioms:
— IC => ((f x1 x2 …) = body)
— IC => OC

o In fact, IC => OC is not an axiom but a theorem, since we must
prove it before we admit the function (c.f. admissibility
condition 5)

Tripakis Logic and Computation, Fall 2019 17

(defunc f (x1 x2 …)
:input-contract IC
:output-contract OC
(body))

Is checking admissibility easy?

Tripakis Logic and Computation, Fall 2019 18

Is checking admissibility easy?

• No!
• In fact it is very hard! Very, very hard …

• Checking termination is generally undecidable
• Proving theorems is also generally undecidable

• We will talk more about these things next time
• For now, let’s just do some examples

Tripakis Logic and Computation, Fall 2019 19

Examples

Tripakis Logic and Computation, Fall 2019 20

Example 1

• Is this definition admissible?

• Yes!
• Let’s go over all 6 conditions one by one.

Tripakis Logic and Computation, Fall 2019 21

(definec f (x :nat) :int
(if (equal x 0)

1
(+ 1 (f (- x 1)))))

1. f is a new function symbol, e.g., there are no existing axioms
about f (so, we have to maintain a history of function
definitions)

2. The xi are distinct variable symbols
3. body is a term, possibly using f recursively as a function

symbol, mentioning no other variables freely other than the xi
4. The function is terminating on all inputs satisfying IC

5. IC => OC is a theorem
6. The body contracts hold under the assumption that IC holds

Example 2

• Is this definition admissible?

• No!
• If y is negative, function doesn’t return a nat

Tripakis Logic and Computation, Fall 2019 22

(definec f (x :tl y :int) :nat
(if (endp x)

y
(+ 1 (f (rest x) y))))

1. f is a new function symbol, e.g., there are no existing axioms
about f (so, we have to maintain a history of function
definitions)

2. The xi are distinct variable symbols
3. body is a term, possibly using f recursively as a function

symbol, mentioning no other variables freely other than the xi
4. The function is terminating on all inputs satisfying IC

5. IC => OC is a theorem
6. The body contracts hold under the assumption that IC holds

Example 3

• Is this definition admissible?

• No!
• Non-terminating, e.g., when y=-1
• Note that (rest nil) = (cdr nil) = nil

Tripakis Logic and Computation, Fall 2019 23

(definec f (x :tl y :int) :tl
(if (equal y 0)
x
(f (rest x) (- y 1))))

1. f is a new function symbol, e.g., there are no existing axioms
about f (so, we have to maintain a history of function
definitions)

2. The xi are distinct variable symbols
3. body is a term, possibly using f recursively as a function

symbol, mentioning no other variables freely other than the xi
4. The function is terminating on all inputs satisfying IC

5. IC => OC is a theorem
6. The body contracts hold under the assumption that IC holds

Example 4

• Is this definition admissible?

• No!
• Uses (“global”) free variable y in the body

Tripakis Logic and Computation, Fall 2019 24

(definec f (x :nat) :int
(cond ((equal x 0) 1)

((< x 0) (f -1))
(t (+ 1 (f (- y 1))))))

1. f is a new function symbol, e.g., there are no existing axioms
about f (so, we have to maintain a history of function
definitions)

2. The xi are distinct variable symbols
3. body is a term, possibly using f recursively as a function

symbol, mentioning no other variables freely other than the xi
4. The function is terminating on all inputs satisfying IC

5. IC => OC is a theorem
6. The body contracts hold under the assumption that IC holds

Example 5

• Is this definition admissible?

• Yes!
• Note that middle case is “dead code” – why?
• Let’s go over all 6 conditions one by one.

Tripakis Logic and Computation, Fall 2019 25

(definec f (x :nat y :nat) :int
(cond ((equal x 0) 1)

((< x 0) (f -1 (/ x y)))
(t (+ 1 (f (- x 1) y)))))

1. f is a new function symbol, e.g., there are no existing axioms
about f (so, we have to maintain a history of function
definitions)

2. The xi are distinct variable symbols
3. body is a term, possibly using f recursively as a function

symbol, mentioning no other variables freely other than the xi
4. The function is terminating on all inputs satisfying IC

5. IC => OC is a theorem
6. The body contracts hold under the assumption that IC holds

Example 6

• Is this definition admissible?

• Yes!
• The list x gets longer, but y decreases and

eventually reaches 0

Tripakis Logic and Computation, Fall 2019 26

(definec f (x :tl y :nat) :tl
(cond ((equal y 0) nil)

((endp x) (list y))
(t (f (cons y x) (- y 1)))))

1. f is a new function symbol, e.g., there are no existing axioms
about f (so, we have to maintain a history of function
definitions)

2. The xi are distinct variable symbols
3. body is a term, possibly using f recursively as a function

symbol, mentioning no other variables freely other than the xi
4. The function is terminating on all inputs satisfying IC

5. IC => OC is a theorem
6. The body contracts hold under the assumption that IC holds

Next time

• The hardness of termination
• The hardness of proving theorems

Tripakis Logic and Computation, Fall 2019 27

