Logic and Computation — CS 2800
Fall 2019

Lecture 14
Equational reasoning

Stavros Tripakis

Northeastern University
Khoury College of
Computer Sciences




A couple more notes on Boolean
logic

* Boolean operators have a correspondence with classic
operators on sets:

* Let [¢] be the set of assignments that make ¢ true
* Conjunction = intersection

— [[p1 A2l = P11 0 [P,]
* Disjunction = union
— [[p1 V@2l = P11 U [¢,]
* Negation = complementation
— [-¢l = [¢]
* Implication = subset relation
— The formula ¢p; = ¢, is valid iff [[¢p1] S [¢P-]



A couple more notes on Boolean
logic

* Implication = subset relation
— The formula ¢p; — ¢, is valid iff [¢1] S [P, ]

* Then it's easy to see why ¢, V (P A Pp,) = ¢pq:

— (P1 APy) = ¢q,50 [P APl € [P4]
— 1 V(1 Ad)]l = P11 U 1 A @]l = [P4]



Quiz

* Does XOR distribute over disjunction?

* i.e., is this equivalence valid?
—a®@bve)= (@a®b)VvV(adc)

A. Yes
B. No



Outline

* Beyond propositional logic

* Equational reasoning: an introduction



Beyond Boolean logic



Tripakis

Non-Boolean formulas

* Consider the formula: x + y =y + x

e Suppose that variables x and y are rational
numbers, and + is the usual arithmetic addition

* Then, this is not a propositional logic formula

e But it’s still a valid formula: for any pair of x and vy,
the formula evaluates to true

* How to prove that?

e We can’t construct the entire truth table: it’s
infinite!

Logic and Computation, Fall 2019



Finite work, infinite results

* We need a finite proof

* The proof will be finite, but it will imply an “infinite
result”, namely, that the formula is true for all
rational numbers x and y

* Equational reasoning: a class of such finite proofs

 We are now getting into the heart of proving
program correctness!



(definec len (1 :all) :nat
Examp\e (1f (consp 1)
(+ 1 (len (cdr 1)))
0))

* Conjecture 1:
— (equal (len (list x)) (len x))
— True or false?
— False: e.g., let x=1
— (equal (len (list 1)) (len 1))
= (equal (+ 1 (len nil)) O0)
= (equal (+ 1 0) 0)
= (equal 1 0)
= nil
* Checking a candidate counterexample is easy: just
plug in the values and evaluate

Logic and Computation, Fall 2019



(definec len (1 :all) :nat
Examp\e (1f (consp 1)

(+ 1 (len (cdr 1)))
0))

* Conjecture 2:
— (thm (equal (len (cons x 2z))
(len (cons vy z))))

— True or false?

— True!
— We need a finite proof...

Tripakis Logic and Computation, Fall 2019



(definec len (1 :all) :nat

Equational proof | tf (conse 1)

(+ 1 (len (cdr 1)))
0))

Goal: (len (cons x z)) = (len (cons y z))
(len (cons x (list z)))

= }

. continue ..

Tripakis Logic and Computation, Fall 2019 11



(definec len (1 :all) :nat

" (1f (consp 1)
Equational proof Lloomee D
0))

(cons x z))
{ definition of len }
f (consp (cons x z))
(+ 1 (len (cdr (cons x (list z)))))
0))
= { consp axioms }
(1f t
(+ 1 (len (cdr (cons x z))))
0))
= { 1f axioms }
(+ 1 (len (cdr (cons x z))))
= { cdr axioms }
(+ 1 (len 2z))

(1
(1

Logic and Computation, Fall 2019 12



(+ 1
0))

(definec len

Equational proof | tf (conse 1)

(len

(L :all)

(cdr 1)))

‘nat

 So far, we proved this:
(len (cons x z))

(+ 1 (len z))

e But we wanted this:

(equal (len (cons x z))
(lLen (cons v z)))

* How to continue?

Tripakis Logic and Computation, Fall 2019

13




(definec len (1 :all) :nat

Equational proof | tf (conse 1)

(+ 1 (len (cdr 1)))
0))

* We have this:
(len (cons x Zz))
= (+ 1 (len z))
(len (cons x z))
= (len (cons y z)))

e We want this:

* We have several options:
— We can start from the right-hand side and prove

(len (cons vy z)) = (+ 1 (len z))

— We can use a lemma

Tripakis Logic and Computation, Fall 2019 14



(definec len (1 :all)

Lemmas (if (COI’lSp l)

(+ 1 (len (cdr 1)))
0))

tnat

* Prove them once, use them again and again!
* “helper theorems” (like helper functions)

e OQur Lemma:
(len (cons x z)) = (+ 1 (len z))

* The Lemma holds for any x and z!

* So we can instantiate it with y instead of x:
(len (cons vy z)) = (+ 1 (len z))

* Instantiation is like “calling” the lemma with
different arguments (like calling a helper function)




Tripakis

Proof using the

LEeMMma

(len (cons x z))
= { Lemma }
(+ 1 (len z))

(definec len (1 :all)

(1f (consp 1)

(+ 1 (len (cdr 1)))

0))

tnat

= { Lemma with instantiation ((x y))

(len (cons y z))

Note: here we implicitly used
symmetry of equality:
If A=Bthen B=A

}

Lemma :
(len (cons x z))

= (+ 1 (len z))

Logic and Computation, Fall 2019

16




Recap: proofs

* Finite proofs: finite number of steps
e Justification for each step

* Beyond propositional logic:
— non-Boolean variables, ACL2s functions, axioms of

predefined functions, equality properties, lemmas,
instantiations, ...

* In the end, we can prove a very strong result:

— That something holds for any object in the ACL2s
universe!



Equality



Equality

* Equality is an equivalence relation
— Reflexive: forallx : x = x
— Symmetric: forallx ,y:x=y=>y=x
— Transitive: forallx,y,z: (x =yAy=2)=>x =12z

* The above properties are axioms:
— Things we take for granted (we don’t have to prove them)
— We can use any axiom in our proofs!

— We use axioms like we use lemmas: we can instantiate them
with anything we like, e.g., 42=42, nil=nil,
“hello”="“hello”,

* In ACL2s, we write (equal x v)
— On paper, slides, whiteboard, etc., we can alsowrite x = v

Tripakis Logic and Computation, Fall 2019

19



Tripakis

Equality

* Equality Axiom Schema for Functions:
* For every function symbol f of arity n, we have the
axiom:

— Forall x¢, x5, ..., X0, V1, V2, oo Vi
(X1 = Y1 AX =Y A AXy = Yy) =
fxgxp o) =(f y1Y2 - Yn)

* Example:
(lmplies (equal x y) (equal (len x) (len y)))

Logic and Computation, Fall 2019

20



Axioms for built-in functions



Tripakis

Some axioms for built-in functions

(from now on we drop the “for all x, y, ...” part, which is implicit)

e Axioms for 1 f:
— X = nil => (1f x y z2) = Z

— X # nil => (1f x y z) =Yy

e Axioms for car, cdr:
— (car (cons x y)) = X
— (cdr (cons x y)) =y

* Axiom for consp:

— (consp (cons x y)) =t

Logic and Computation, Fall 2019 22



Next time

* Equational reasoning continued



