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* The power of XOR — a bit of cryptography



P vs NP and the SAT problem
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Motivating questions

* Is it possible to check automatically whether a
given Boolean formula is satisfiable?

* Yes:
1. Build the truth table of the formula
2. Check whether there is at least one “T” in the last

column
3. The row which has the “T” gives a satisfying assignment
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Motivating questions

* Is it possible to check automatically whether a
given Boolean formula is satisfiable?

* Yes: e.g., build the truth table

* Is this an easy problem? Is the truth-table method a
good one? How big is the truth table?

* |If the formula has N variables, the size of the truth
table is 2V
— 210 =1024

— 2100 = 1267650600228229401496703
— 21000 =
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P vs NP

e P = the class of efficiently (polynomial-time)
computable problems

* NP =the class of problems whose solution can be
checked efficiently (in polynomial-time)

* Every problem in P is also in NP: P € NP —why?
— Note that P and NP are sets of problems

* Most computer scientists believe that NP # P

* But nobody has been able to prove that yet!



Clay institute “millennium problems”
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Millennium Problems

Yang-Mills and Mass Gap

Experiment and computer simulations suggest the existence of a "mass gap" in the solution to the quantum versions of the Yang-Mills equations. But

no proof of this property is known.

Riemann Hypothesis
The prime number theorem determines the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the
average. Formulated in Riemann's 1859 paper, it asserts that all the 'non-obvious' zeros of the zeta function are complex numbers with real part 1/2.

P vs NP Problem

If it is easy to check that a solution to a problem is correct, is it also easy to solve the problem? This is the essence of the P vs NP question. Typical of
the NP problems is that of the Hamiltonian Path Problem: given N cities to visit, how can one do this without visiting a city twice? If you give me a

solution, | can easily check that it is correct. But | cannot so easily find a solution.
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The Hamiltonian path problem

Given a graph, does there exist a path that visits all nodes exactly once?

0
This graph has no Hamiltonian path: 1
2 3
Fig. 1
This graph has two Hamiltonian paths:
0 0 0
1 (1 1
2 3 2 ( 3 2 3
Fig. 2 Fig. 3 Fig. 4

Figure taken from https://www.hackerearth.com/practice/algorithms/graphs/hamiltonian-path/tutorial/
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What does NP # P mean??

e We know that: P € NP
* SO NP = P means P € NP: P is a strict subset of NP

* j.e., there exists at least one problem in NP, that is
notinP

* We know many problems that are in NP, but we
haven’t yet found one that we can prove is not in P



The SAT problem

* The Boolean satisfiability (SAT) problem: given a
Boolean (propositional logic) formula ¢, check whether
¢ is satisfiable.

* Fact: SAT is in NP. Why?

* |f you give me an assignment, | can easily check
whether it’s a satisfying assignment for ¢ :

1. Replace all the variables in ¢ by their values as given by the
assignment — this is linear in the length of ¢

2. Evaluate the resulting formula (which only has constants)

3. Evaluating a formula is efficient too: polynomial in the length
of the formula



The SAT problem

* The Boolean satisfiability (SAT) problem: given a
Boolean (propositional logic) formula ¢, check whether
¢ is satisfiable.

* Theorem [Cook-Levin ~1970]: SAT is NP-complete

* What this means is:
1. SATisin NP.

2. Every other problem in NP is no harder than SAT: if you can
solve SAT, you can solve any other problem in NP with pretty
much the same computational cost.



Reducing Hamiltonian path to SAT

* If | could solve SAT efficiently (in polynomial time)
then | could also solve Hamiltonian path efficiently.

e How?

* |dea: Given a graph, create a Boolean formula such
that the graph has a Hamiltonian path iff the
formula is satisfiable.

e How?



Reducing Hamiltonian path to SAT

* |dea: Given a graph, create a Boolean formula such
that the graph has a Hamiltonian path iff the
formula is satisfiable.

* Let N be the number of nodes in the graph.

* The formula will have N? propositional variables:
Xi’ijFO < l,] <N-1

* Variable x; ; means: graph node i appears at
position j in the Hamiltonian path

* Now all that remains is to encode the constraints of
what it means to be a valid Hamiltonian path!
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Reducing Hamiltonian path to SAT

* Xx; j : graph node i appears at position j in the
Hamiltonian path

* Hamiltonian path constraints for our example:
— Every graph node must appear in the path: 2

(x0,0 \ x0’1 \ xO,Z \ XO’3) AN (xl,o VvV xl,l V x1,2 V x1,3) N e



Reducing Hamiltonian path to SAT

* Xx; j : graph node i appears at position j in the
Hamiltonian path

* Hamiltonian path constraints for our example:
— Every node appears exactly once: 2

(.’X:0,0 = (—|x0,1 N —|x0,2 N _|x0’3)) N (XO,]_ - (—|x0’0 N —|x0,2 N —|x0,3)) N

e /\ (xl,O 4 (_le,l /\ _|x1,2 /\ _le,S)) /\ ce



Reducing Hamiltonian path to SAT

* Xx; j : graph node i appears at position j in the
Hamiltonian path

* Hamiltonian path constraints for our example:

— Every position in the path is occupied by some 2
node:

(x0,0 \Y xl,o VvV xZ’O \Y x3,0) N (x(),l V xl,l V x2,1 V x3’1) N e



Reducing Hamiltonian path to SAT

* Xx; j : graph node i appears at position j in the
Hamiltonian path

* Hamiltonian path constraints for our example:
— Two nodes cannot occupy the same position: 2

(xo,o = (mX10 A X0 A —|x3’0))
/\ (XO’]_ - (_le’l /\ _|x2,1 /\ _|x3,1)) /\ °e



Reducing Hamiltonian path to SAT

* Xx; j : graph node i appears at position j in the
Hamiltonian path

* Hamiltonian path constraints for our example:

— If two nodes are adjacent in the path, then there (2
must be an edge between them in the graph:

_I(x0,0 /\ x3,1) /\ _I(x0,0 /\ xZ,l) /\ °°e



The SAT problem

* Putting it all together:
1. We don’t know if SAT isin P

2. The question whether SAT is in P is equivalent to the
qguestion whether P = NP

3. Many combinatorial problems can be reduced to SAT
4. SAT is a very important problem!
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SAT solvers

* Tools that check Boolean satisfiability
* Impressive progress in the last 20 years

* Today: SAT solvers can solve formulas with millions
of variables!

* How many assignments does a formula with a

million variables have?
. 21,000,000

* See paper “Boolean Satisfiability: From Theoretical
Hardness to Practical Success”, by Malik and Zhang,
CACM 2009
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Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout
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Figure 1: Evolution of the best solvers from 2002 to 2010 on the application benchmarks from the SAT 2009
competition using the cumulative number of problems solved (x axis) within a specific amount of time (y
axis). The farther to the right the data points are, the better the solver.

https://www.cs.helsinki.fi/u/mjarvisa/papers/jarvisalo-leberre-roussel-simon.aimag.pdf




Can | use ACL2s as a SAT solver?

* Can | use ACL2s as a completely automated SAT
solver, and how?
— Demo



Quiz

e Suppose you are given a tool that checks VALIDITY
— Given a formula ¢, the tool returns YES if ¢ is valid, and

NO if ¢ is not valid.

— Let VALID?(¢) be the result of the tool.

* Can you use this tool to check whether ¢ is
FALSIFIABLE, and how?

A.
B. Yes, FALSIFIABLE(¢p) := (VALID?(¢b) = NO)
C.

D. Yes, FALSIFIABLE(¢p) := (VALID?(—¢b) = YES)

No, it cannot be done

Yes, FALSIFIABLE(¢) := (VALID?(—¢p) = NO)



Quiz

e Suppose you are given a tool that checks VALIDITY

— Given a formula ¢, the tool returns YES if ¢ is valid, and
NO if ¢ is not valid.

— Let VALID?(¢) be the result of the tool.

* Can you use this tool to check whether ¢ is
SATISFIABLE, and how?
A. No, it cannot be done
Yes, SATISFIABLE(¢) := (VALID?(¢b) = YES)
Yes, SATISFIABLE(¢) := (VALID?(¢p) = NO)
. Yes, SATISFIABLE(¢p) := (VALID?(—¢p) = YES)
Yes, SATISFIABLE(¢) := (VALID?(—¢p) = NO)

Mmoo ®



Going further on SAT/SMT solvers

* Going further:
— http://www.satcompetition.org/

— https://www.cs.helsinki.fi/u/mjarvisa/papers/jarvisalo-
leberre-roussel-simon.aimag.pdf

— Proceedings of SAT COMPETITION 2018: Solver and
Benchmark Descriptions:
https://helda.helsinki.fi/bitstream/handle/10138/23706

3/sc2018 proceedings.pdf?sequence=6
— Prof. Manolios’ CS-4820 class

 SMT solvers:
— E.g., Z3: https://rise4fun.com/Z3/tutorial/guide
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A bit of cryptography — the
power of XOR



The Power of Xor

» You have probably seen movies with the “red telephone” that
connects the Pentagon with the Kremlin

» A classic is Dr. Strangelove

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



The Red Phone
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The Power of Xor
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The Power of Xor

» You have probably seen movies with the “red telephone” that
connects the Pentagon with the Kremlin

» A classic is Dr. Strangelove
> View https://www.youtube.com/watch?v=VEB-OoUrNuk to 1:24
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https://www.youtube.com/watch?v=VEB-OoUrNuk

The Power of Xor

» You have probably seen movies with the “red telephone” that
connects the Pentagon with the Kremlin

» A classic is Dr. Strangelove
> View https://www.youtube.com/watch?v=VEB-OoUrNuk to 1:24

» There was no red phone but there was a teletype-based
encryption mechanism in place between the US and USSR that
used the encryption method we will cover next
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https://www.youtube.com/watch?v=VEB-OoUrNuk

Cryptography
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Cryptography

» (Goal: secret communication

> crypto, graphy are Greek for hidden, writing
> Date back to Egypt (1900 BCE)

» Used for commerce, war, love letters, religion, ...
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Cryptography

» (Goal: secret communication

> crypto, graphy are Greek for hidden, writing
> Date back to Egypt (1900 BCE)

» Used for commerce, war, love letters, religion, ...

> Examples

» Scytale: Archilochus 7th century BC
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Cryptography

» (Goal: secret communication

> crypto, graphy are Greek for hidden, writing
> Date back to Egypt (1900 BCE)

» Used for commerce, war, love letters, religion, ...

> Examples

» Scytale: Archilochus 7th century BC

» Caesar Shift Cipher: shift letters by some number

» Confederate Cipher Disc: Civil War
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Cryptography

» (Goal: secret communication

> crypto, graphy are Greek for hidden, writing
> Date back to Egypt (1900 BCE)

» Used for commerce, war, love letters, religion, ...

> Examples
» Scytale: Archilochus 7th century BC
» Caesar Shift Cipher: shift letters by some number
» Confederate Cipher Disc: Civil War
» Enigma: used by Germany in WWI|

» Breaking Enigma shortened the war (Turing et al)
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Exercise
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Exercise

» You got the following encrypted message. Decrypt it.
> Uif tfdsfu pshbojabujpo nffut upojhiu
> Quiz: A. | got it! B: This is hard!
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Exercise

» You got the following encrypted message. Decrypt it.
> Uif tfdsfu pshbojabujpo nffut upojhiu

> Quiz: A. | got it! B: This is hard!

» Frequency analysis: the most common letters are e, t
U6

2 f: 5
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Exercise

» You got the following encrypted message. Decrypt it.
> Uif tfdsfu pshbojabujpo nffut upojhiu

> Quiz: A. | got it! B: This is hard!

» Frequency analysis: the most common letters are e, t
U6
>f.5

» Hint: Caesar Shift Cipher: shift letters by some number
> Shift by 16, 1
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Exercise

» You got the following encrypted message. Decrypt it.
> Uif tfdsfu pshbojabujpo nffut upojhiu

> Quiz: A. | got it! B: This is hard!

» Frequency analysis: the most common letters are e, t
U6
>f.5

» Hint: Caesar Shift Cipher: shift letters by some number
> Shift by 16, 1

» Answer? The secret organization meets tonight

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



One-Time Pad
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One-Time Pad

> Allow us to encrypt messages with “perfect” secrecy

> |f an adversary intercepts an encoded message, they gain no
information, except for an upper bound on the message length

> Compare: RSA can be broken, with enough computational resources
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One-Time Pad

> Allow us to encrypt messages with “perfect” secrecy

> |f an adversary intercepts an encoded message, they gain no
information, except for an upper bound on the message length

> Compare: RSA can be broken, with enough computational resources

» A message is a sequence of bits, say 0’s & 1’s. Any ideas?
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One-Time Pad

> Allow us to encrypt messages with “perfect” secrecy

> |f an adversary intercepts an encoded message, they gain no
information, except for an upper bound on the message length

> Compare: RSA can be broken, with enough computational resources
» A message is a sequence of bits, say 0’s & 1’s. Any ideas?

> Alice and Bob agree on a secret, a sequence of random 0’s & 1’s
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One-Time Pad

> Allow us to encrypt messages with “perfect” secrecy

> |f an adversary intercepts an encoded message, they gain no
information, except for an upper bound on the message length

> Compare: RSA can be broken, with enough computational resources
» A message is a sequence of bits, say 0’s & 1’s. Any ideas?
> Alice and Bob agree on a secret, a sequence of random 0’s & 1’s

> To send message m, Alice xor’s m with s, the secret: c = m®s
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One-Time Pad

> Allow us to encrypt messages with “perfect” secrecy

> |f an adversary intercepts an encoded message, they gain no
information, except for an upper bound on the message length

> Compare: RSA can be broken, with enough computational resources
» A message is a sequence of bits, say 0’s & 1’s. Any ideas?
> Alice and Bob agree on a secret, a sequence of random 0’s & 1’s

> To send message m, Alice xor’s m with s, the secret: c = m®s

» When Bob gets ¢, he xor’s it with s: cés =m
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One-Time Pad

> Allow us to encrypt messages with “perfect” secrecy

> |f an adversary intercepts an encoded message, they gain no
information, except for an upper bound on the message length

> Compare: RSA can be broken, with enough computational resources
» A message is a sequence of bits, say 0’s & 1’s. Any ideas?
> Alice and Bob agree on a secret, a sequence of random 0’s & 1’s
> To send message m, Alice xor’s m with s, the secret: c = m®s
» When Bob gets ¢, he xor’s it with s: cés =m
> Example: m=1001000100011...
s=1101011010111...
c=0100011110100...
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One-Time Pad

> Allow us to encrypt messages with “perfect” secrecy

> |f an adversary intercepts an encoded message, they gain no
information, except for an upper bound on the message length

> Compare: RSA can be broken, with enough computational resources

» A message is a sequence of bits, say 0’s & 1’s. Any ideas?
> Alice and Bob agree on a secret, a sequence of random 0’s & 1’s
> To send message m, Alice xor’s m with s, the secret: c = m®s
» When Bob gets ¢, he xor’s it with s: cés =m
> Example: m=1001000100011...

s=1101011010111...

c=0100011110100...

co®s=1001000100011...
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One-Time Pad
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One-Time Pad

> Allow us to encrypt messages with "perfect” secrecy

> If an adversary intercepts an encoded message, they gain no information,
except for an upper bound on the message length
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One-Time Pad

> Allow us to encrypt messages with "perfect” secrecy

> If an adversary intercepts an encoded message, they gain no information,
except for an upper bound on the message length

» To send message m, Alice xor's m with s, the secret. c= m®s
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One-Time Pad

> Allow us to encrypt messages with "perfect” secrecy

> |f an adversary intercepts an encoded message, they gain no information,
except for an upper bound on the message length

» To send message m, Alice xor's m with s, the secret. c= m®s

» When Bob gets c, he xor’s it with s: cés =m
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One-Time Pad

> Allow us to encrypt messages with "perfect” secrecy

> |f an adversary intercepts an encoded message, they gain no information,
except for an upper bound on the message length

» To send message m, Alice xor's m with s, the secret. c= m®s
» When Bob gets ¢, he xor’s it with s: c®és =m

> Why is it “perfect”?

> If we have c, the encrypted msg, then for every, m, an arbitrary msg of the
same length, there is some secret, s, that when used to decode c yields m
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One-Time Pad

> Allow us to encrypt messages with "perfect” secrecy

> |f an adversary intercepts an encoded message, they gain no information,
except for an upper bound on the message length

» To send message m, Alice xor's m with s, the secret. c= m®s
» When Bob gets ¢, he xor’s it with s: c®és =m
> Why is it “perfect”?

> If we have c, the encrypted msg, then for every, m, an arbitrary msg of the
same length, there is some secret, s, that when used to decode c yields m

> Example: ¢=0100011110100... (the same c as before)
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One-Time Pad

> Allow us to encrypt messages with "perfect” secrecy

> |f an adversary intercepts an encoded message, they gain no information,
except for an upper bound on the message length

» To send message m, Alice xor's m with s, the secret. c= m®s
» When Bob gets ¢, he xor’s it with s: c®és =m

> Why is it “perfect”?

> If we have c, the encrypted msg, then for every, m, an arbitrary msg of the
same length, there is some secret, s, that when used to decode c yields m

> Example: ¢=0100011110100... (the same c as before)
Mm=0110111011100... (a different m)
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One-Time Pad

> Allow us to encrypt messages with "perfect” secrecy

> |f an adversary intercepts an encoded message, they gain no information,
except for an upper bound on the message length

» To send message m, Alice xor's m with s, the secret. c= m®s
» When Bob gets ¢, he xor’s it with s: c®és =m

> Why is it “perfect”?

> If we have c, the encrypted msg, then for every, m, an arbitrary msg of the
same length, there is some secret, s, that when used to decode c yields m

> Example: ¢=0100011110100... (the same c as before)
Mm=0110111011100... (a different m)
s=0010100101000... (the corresponding s)

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019



One-Time Pad

> Allow us to encrypt messages with "perfect” secrecy

> |f an adversary intercepts an encoded message, they gain no information,
except for an upper bound on the message length

» To send message m, Alice xor's m with s, the secret. c= m®s
» When Bob gets ¢, he xor’s it with s: c®és =m

> Why is it “perfect”?

> If we have c, the encrypted msg, then for every, m, an arbitrary msg of the
same length, there is some secret, s, that when used to decode c yields m

> Example: ¢=0100011110100... (the same c as before)
Mm=0110111011100... (a different m)
s=0010100101000... (the corresponding s)
c®s=0110111011100...
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