Logic and Computation - CS 2800 Fall 2019

Lecture 11
Propositional logic continued
The SAT problem

Stavros Tripakis

Northeastern University Khoury College of
Computer Sciences

Outline

- The SAT problem
- P vs NP
- The power of XOR - a bit of cryptography

P vs NP and the SAT problem

Motivating questions

- Is it possible to check automatically whether a given Boolean formula is satisfiable?
- Yes:

1. Build the truth table of the formula
2. Check whether there is at least one " T " in the last column
3. The row which has the " T " gives a satisfying assignment

Motivating questions

- Is it possible to check automatically whether a given Boolean formula is satisfiable?
- Yes: e.g., build the truth table
- Is this an easy problem? Is the truth-table method a good one? How big is the truth table?
- If the formula has N variables, the size of the truth table is 2^{N}
$-2^{10}=1024$
$-2^{100}=1267650600228229401496703$
$-2^{1000}=\ldots$

P vs NP

- $P=$ the class of efficiently (polynomial-time) computable problems
- NP = the class of problems whose solution can be checked efficiently (in polynomial-time)
- Every problem in P is also in NP: $\mathrm{P} \subseteq \mathrm{NP}$ - why?
- Note that P and NP are sets of problems
- Most computer scientists believe that NP $\neq P$
- But nobody has been able to prove that yet!

Clay institute "millennium problems"

The Hamiltonian path problem

Given a graph, does there exist a path that visits all nodes exactly once?

This graph has no Hamiltonian path:

Fig. 1

This graph has two Hamiltonian paths:

Figure taken from https://www.hackerearth.com/practice/algorithms/graphs/hamiltonian-path/tutorial/

What does NP $\neq \mathrm{P}$ mean?

- We know that: $P \subseteq N P$
- So NP $\neq P$ means $P \subset N P: P$ is a strict subset of NP
- i.e., there exists at least one problem in NP, that is not in P
- We know many problems that are in NP, but we haven't yet found one that we can prove is not in P

The SAT problem

- The Boolean satisfiability (SAT) problem: given a Boolean (propositional logic) formula ϕ, check whether ϕ is satisfiable.
- Fact: SAT is in NP. Why?
- If you give me an assignment, I can easily check whether it's a satisfying assignment for ϕ :

1. Replace all the variables in ϕ by their values as given by the assignment - this is linear in the length of ϕ
2. Evaluate the resulting formula (which only has constants)
3. Evaluating a formula is efficient too: polynomial in the length of the formula

The SAT problem

- The Boolean satisfiability (SAT) problem: given a Boolean (propositional logic) formula ϕ, check whether ϕ is satisfiable.
- Theorem [Cook-Levin ~1970]: SAT is NP-complete
- What this means is:

1. SAT is in NP.
2. Every other problem in NP is no harder than SAT: if you can solve SAT, you can solve any other problem in NP with pretty much the same computational cost.

Reducing Hamiltonian path to SAT

- If I could solve SAT efficiently (in polynomial time) then I could also solve Hamiltonian path efficiently.
- How?
- Idea: Given a graph, create a Boolean formula such that the graph has a Hamiltonian path iff the formula is satisfiable.
- How?

Reducing Hamiltonian path to SAT

- Idea: Given a graph, create a Boolean formula such that the graph has a Hamiltonian path iff the formula is satisfiable.
- Let N be the number of nodes in the graph.
- The formula will have N^{2} propositional variables: $x_{i, j}$ for $0 \leq i, j \leq N-1$
- Variable $x_{i, j}$ means: graph node i appears at position j in the Hamiltonian path
- Now all that remains is to encode the constraints of what it means to be a valid Hamiltonian path!

Reducing Hamiltonian path to SAT

- $x_{i, j}$: graph node i appears at position j in the Hamiltonian path
- Hamiltonian path constraints for our example:
- Every graph node must appear in the path:

$$
\left(x_{0,0} \vee x_{0,1} \vee x_{0,2} \vee x_{0,3}\right) \wedge\left(x_{1,0} \vee x_{1,1} \vee x_{1,2} \vee x_{1,3}\right) \wedge \cdots
$$

Reducing Hamiltonian path to SAT

- $x_{i, j}$: graph node i appears at position j in the Hamiltonian path
- Hamiltonian path constraints for our example:
- Every node appears exactly once:

$$
\begin{aligned}
& \left(x_{0,0} \rightarrow\left(\neg x_{0,1} \wedge \neg x_{0,2} \wedge \neg x_{0,3}\right)\right) \wedge\left(x_{0,1} \rightarrow\left(\neg x_{0,0} \wedge \neg x_{0,2} \wedge \neg x_{0,3}\right)\right) \wedge \\
& \cdots \wedge\left(x_{1,0} \rightarrow\left(\neg x_{1,1} \wedge \neg x_{1,2} \wedge \neg x_{1,3}\right)\right) \wedge \cdots
\end{aligned}
$$

Reducing Hamiltonian path to SAT

- $x_{i, j}$: graph node i appears at position j in the Hamiltonian path
- Hamiltonian path constraints for our example:
- Every position in the path is occupied by some node:

$$
\left(x_{0,0} \vee x_{1,0} \vee x_{2,0} \vee x_{3,0}\right) \wedge\left(x_{0,1} \vee x_{1,1} \vee x_{2,1} \vee x_{3,1}\right) \wedge \cdots
$$

Reducing Hamiltonian path to SAT

- $x_{i, j}$: graph node i appears at position j in the Hamiltonian path
- Hamiltonian path constraints for our example:
- Two nodes cannot occupy the same position:

$$
\begin{aligned}
& \left(x_{0,0} \rightarrow\left(\neg x_{1,0} \wedge \neg x_{2,0} \wedge \neg x_{3,0}\right)\right) \\
& \wedge\left(x_{0,1} \rightarrow\left(\neg x_{1,1} \wedge \neg x_{2,1} \wedge \neg x_{3,1}\right)\right) \wedge \cdots
\end{aligned}
$$

Reducing Hamiltonian path to SAT

- $x_{i, j}$: graph node i appears at position j in the Hamiltonian path
- Hamiltonian path constraints for our example:
- If two nodes are adjacent in the path, then there must be an edge between them in the graph:

$$
\neg\left(x_{0,0} \wedge x_{3,1}\right) \wedge \neg\left(x_{0,0} \wedge x_{2,1}\right) \wedge \cdots
$$

The SAT problem

- Putting it all together:

1. We don't know if SAT is in P
2. The question whether SAT is in P is equivalent to the question whether $P=N P$
3. Many combinatorial problems can be reduced to SAT
4. SAT is a very important problem!

SAT solvers

- Tools that check Boolean satisfiability
- Impressive progress in the last 20 years
- Today: SAT solvers can solve formulas with millions of variables!
- How many assignments does a formula with a million variables have?
$-2^{1,000,000}$
- See paper "Boolean Satisfiability: From Theoretical Hardness to Practical Success", by Malik and Zhang, CACM 2009

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Figure 1: Evolution of the best solvers from 2002 to 2010 on the application benchmarks from the SAT 2009 competition using the cumulative number of problems solved (x axis) within a specific amount of time (y axis). The farther to the right the data points are, the better the solver.

Can I use ACL2s as a SAT solver?

- Can I use ACL2s as a completely automated SAT solver, and how?
- Demo

Quiz

- Suppose you are given a tool that checks VALIDITY
- Given a formula ϕ, the tool returns YES if ϕ is valid, and NO if ϕ is not valid.
- Let VALID? (ϕ) be the result of the tool.
- Can you use this tool to check whether ϕ is FALSIFIABLE, and how?
A. No, it cannot be done
B. Yes, FALSIFIABLE $(\phi):=(\operatorname{VALID} ?(\phi)=\mathrm{NO})$
C. Yes, $\operatorname{FALSIFIABLE}(\phi):=(V A L I D ?(\neg \phi)=$ NO)
D. Yes, FALSIFIABLE $(\phi):=(V A L I D ?(\neg \phi)=$ YES $)$

Quiz

- Suppose you are given a tool that checks VALIDITY
- Given a formula ϕ, the tool returns YES if ϕ is valid, and NO if ϕ is not valid.
- Let VALID? (ϕ) be the result of the tool.
- Can you use this tool to check whether ϕ is SATISFIABLE, and how?
A. No, it cannot be done
B. Yes, SATISFIABLE $(\phi):=(\operatorname{VALID} ?(\phi)=$ YES $)$
C. Yes, SATISFIABLE $(\phi):=(\operatorname{VALID} ?(\phi)=\operatorname{NO})$
D. Yes, SATISFIABLE $(\phi):=(\operatorname{VALID} ?(\neg \phi)=$ YES $)$
E. Yes, $\operatorname{SATISFIABLE}(\phi):=(V A L I D ?(\neg \phi)=\operatorname{NO})$

Going further on SAT/SMT solvers

- Going further:
- http://www.satcompetition.org/
- https://www.cs.helsinki.fi/u/mjarvisa/papers/jarvisalo-leberre-roussel-simon.aimag.pdf
- Proceedings of SAT COMPETITION 2018: Solver and Benchmark Descriptions: https://helda.helsinki.fi/bitstream/handle/10138/23706 3/sc2018 proceedings.pdf?sequence=6
- Prof. Manolios' CS-4820 class
- SMT solvers:
- E.g., Z3: https://rise4fun.com/Z3/tutorial/guide

A bit of cryptography - the power of XOR

See extra slides by Pete Manolios

The Power of Xor

* You have probably seen movies with the "red telephone" that connects the Pentagon with the Kremlin
- A classic is Dr. Strangelove

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

The Red Phone

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

The Power of Xor

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

The Power of Xor

* You have probably seen movies with the "red telephone" that connects the Pentagon with the Kremlin
- A classic is Dr. Strangelove
- View https://www.youtube.com/watch?v=VEB-OoUrNuk to 1:24

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

The Power of Xor

* You have probably seen movies with the "red telephone" that connects the Pentagon with the Kremlin
- A classic is Dr. Strangelove
- View https://www.youtube.com/watch?v=VEB-OoUrNuk to 1:24
* There was no red phone but there was a teletype-based encryption mechanism in place between the US and USSR that used the encryption method we will cover next

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

Cryptography

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

Cryptography

- Goal: secret communication
- crypto, graphy are Greek for hidden, writing
- Date back to Egypt (1900 BCE)
- Used for commerce, war, love letters, religion, ...

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

Cryptography

- Goal: secret communication
- crypto, graphy are Greek for hidden, writing
- Date back to Egypt (1900 BCE)
- Used for commerce, war, love letters, religion, ...
- Examples
- Scytale: Archilochus 7th century BC

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

Cryptography

- Goal: secret communication
* crypto, graphy are Greek for hidden, writing
* Date back to Egypt (1900 BCE)
- Used for commerce, war, love letters, religion, ...
- Examples
- Scytale: Archilochus 7th century BC
- Caesar Shift Cipher: shift letters by some number

- Confederate Cipher Disc: Civil War

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

Cryptography

- Goal: secret communication
* crypto, graphy are Greek for hidden, writing
- Date back to Egypt (1900 BCE)
- Used for commerce, war, love letters, religion, ...
- Examples
- Scytale: Archilochus 7th century BC
- Caesar Shift Cipher: shift letters by some number
- Confederate Cipher Disc: Civil War
- Enigma: used by Germany in WWII
- Breaking Enigma shortened the war (Turing et al)

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

Exercise

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

Exercise

- You got the following encrypted message. Decrypt it.
- Uif tfdsfu pshbojabujpo nffut upojhiu
* Quiz: A. I got it! B: This is hard!

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

Exercise

- You got the following encrypted message. Decrypt it.
- Uif tfdsfu pshbojabujpo nffut upojhiu
* Quiz: A. I got it! B: This is hard!
* Frequency analysis: the most common letters are e, t
- u: 6
- f: 5

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

Exercise

- You got the following encrypted message. Decrypt it.
- Uif tfdsfu pshbojabujpo nffut upojhiu
* Quiz: A. I got it! B: This is hard!
- Frequency analysis: the most common letters are e, t
- u: 6
-f: 5
* Hint: Caesar Shift Cipher: shift letters by some number
- Shift by 16,1

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

Exercise

- You got the following encrypted message. Decrypt it.
- Uif tfdsfu pshbojabujpo nffut upojhiu
* Quiz: A. I got it! B: This is hard!
- Frequency analysis: the most common letters are e, t
- u: 6
-f: 5
* Hint: Caesar Shift Cipher: shift letters by some number
- Shift by 16,1
* Answer? The secret organization meets tonight

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

One-Time Pad

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

One-Time Pad

- Allow us to encrypt messages with "perfect" secrecy
- If an adversary intercepts an encoded message, they gain no information, except for an upper bound on the message length
- Compare: RSA can be broken, with enough computational resources

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

One-Time Pad

* Allow us to encrypt messages with "perfect" secrecy
- If an adversary intercepts an encoded message, they gain no information, except for an upper bound on the message length
- Compare: RSA can be broken, with enough computational resources
- A message is a sequence of bits, say 0's \& 1's. Any ideas?

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

One-Time Pad

* Allow us to encrypt messages with "perfect" secrecy
* If an adversary intercepts an encoded message, they gain no information, except for an upper bound on the message length
- Compare: RSA can be broken, with enough computational resources
* A message is a sequence of bits, say 0's \& 1's. Any ideas?
* Alice and Bob agree on a secret, a sequence of random 0's \& 1's

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

One-Time Pad

* Allow us to encrypt messages with "perfect" secrecy
* If an adversary intercepts an encoded message, they gain no information, except for an upper bound on the message length
- Compare: RSA can be broken, with enough computational resources
* A message is a sequence of bits, say 0's \& 1's. Any ideas?
* Alice and Bob agree on a secret, a sequence of random 0's \& 1's
- To send message m, Alice xor's m with s, the secret: $c=m \oplus s$

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

One-Time Pad

* Allow us to encrypt messages with "perfect" secrecy
* If an adversary intercepts an encoded message, they gain no information, except for an upper bound on the message length
- Compare: RSA can be broken, with enough computational resources
* A message is a sequence of bits, say 0's \& 1's. Any ideas?
* Alice and Bob agree on a secret, a sequence of random 0's \& 1's
- To send message m, Alice xor's m with s, the secret: $c=m \oplus s$
- When Bob gets c , he xor's it with $\mathrm{s}: \mathrm{c} \oplus \mathrm{s}=\mathrm{m}$

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

One-Time Pad

* Allow us to encrypt messages with "perfect" secrecy
* If an adversary intercepts an encoded message, they gain no information, except for an upper bound on the message length
- Compare: RSA can be broken, with enough computational resources
* A message is a sequence of bits, say 0's \& 1's. Any ideas?
* Alice and Bob agree on a secret, a sequence of random 0's \& 1's
- To send message m, Alice xor's m with s, the secret: $c=m \oplus s$
- When Bob gets c , he xor's it with $\mathrm{s}: \mathrm{c} \oplus \mathrm{s}=\mathrm{m}$
- Example: m=1001000100011...

$$
\begin{aligned}
& \mathrm{s}=1101011010111 . . . \\
& \mathrm{c}=0100011110100 . . .
\end{aligned}
$$

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

One-Time Pad

* Allow us to encrypt messages with "perfect" secrecy
* If an adversary intercepts an encoded message, they gain no information, except for an upper bound on the message length
- Compare: RSA can be broken, with enough computational resources
* A message is a sequence of bits, say 0's \& 1's. Any ideas?
* Alice and Bob agree on a secret, a sequence of random 0's \& 1's
- To send message m, Alice xor's m with s, the secret: $c=m \oplus s$
- When Bob gets c , he xor's it with $\mathrm{s}: \mathrm{c} \oplus \mathrm{s}=\mathrm{m}$
- Example: m=1001000100011...

$$
\begin{array}{r}
\mathrm{S}=1101011010111 . . . \\
\mathrm{C}=0100011110100 \ldots \\
\mathrm{C} \oplus \mathrm{~S}=1001000100011 \ldots
\end{array}
$$

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

One-Time Pad

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

One-Time Pad

- Allow us to encrypt messages with "perfect" secrecy
- If an adversary intercepts an encoded message, they gain no information, except for an upper bound on the message length

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

One-Time Pad

- Allow us to encrypt messages with "perfect" secrecy
- If an adversary intercepts an encoded message, they gain no information, except for an upper bound on the message length
- To send message m , Alice xor's m with s , the secret: $\mathrm{c}=\mathrm{m} \oplus \mathrm{s}$

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

One-Time Pad

- Allow us to encrypt messages with "perfect" secrecy
- If an adversary intercepts an encoded message, they gain no information, except for an upper bound on the message length
- To send message m , Alice xor's m with s , the secret: $\mathrm{c}=\mathrm{m} \oplus \mathrm{s}$
- When Bob gets c , he xor's it with s : $\mathrm{c} \oplus \mathrm{s}=\mathrm{m}$

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

One-Time Pad

* Allow us to encrypt messages with "perfect" secrecy
- If an adversary intercepts an encoded message, they gain no information, except for an upper bound on the message length
- To send message m , Alice xor's m with s , the secret: $\mathrm{c}=\mathrm{m} \oplus \mathrm{s}$
\bullet When Bob gets c , he xor's it with s : $\mathrm{c} \oplus \mathrm{s}=\mathrm{m}$
- Why is it "perfect"?
- If we have c, the encrypted msg, then for every, m, an arbitrary msg of the same length, there is some secret, s , that when used to decode c yields m

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

One-Time Pad

- Allow us to encrypt messages with "perfect" secrecy
- If an adversary intercepts an encoded message, they gain no information, except for an upper bound on the message length
- To send message m , Alice xor's m with s , the secret: $\mathrm{c}=\mathrm{m} \oplus \mathrm{s}$
- When Bob gets c , he xor's it with $\mathrm{s}: \mathrm{c} \oplus \mathrm{S}=\mathrm{m}$
- Why is it "perfect"?
- If we have c, the encrypted msg, then for every, m, an arbitrary msg of the same length, there is some secret, s , that when used to decode c yields m
- Example: c=0100011110100... (the same c as before)

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

One-Time Pad

* Allow us to encrypt messages with "perfect" secrecy
- If an adversary intercepts an encoded message, they gain no information, except for an upper bound on the message length
- To send message m , Alice xor's m with s , the secret: $\mathrm{c}=\mathrm{m} \oplus \mathrm{s}$
- When Bob gets c , he xor's it with s : $\mathrm{c} \oplus \mathrm{S}=\mathrm{m}$
- Why is it "perfect"?
- If we have c, the encrypted msg, then for every, m, an arbitrary msg of the same length, there is some secret, s, that when used to decode c yields m
- Example: c=0100011110100... (the same c as before)
$\mathrm{m}=0110111011100$... (a different m)

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

One-Time Pad

* Allow us to encrypt messages with "perfect" secrecy
- If an adversary intercepts an encoded message, they gain no information, except for an upper bound on the message length
- To send message m , Alice xor's m with s , the secret: $\mathrm{c}=\mathrm{m} \oplus \mathrm{s}$
- When Bob gets c , he xor's it with s : $\mathrm{c} \oplus \mathrm{S}=\mathrm{m}$
- Why is it "perfect"?
- If we have c, the encrypted msg, then for every, m, an arbitrary msg of the same length, there is some secret, s, that when used to decode c yields m
- Example: c=0100011110100... (the same c as before)
$\mathrm{m}=0110111011100$... (a different m)
$\mathrm{s}=0010100101000$... (the corresponding s)

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

One-Time Pad

- Allow us to encrypt messages with "perfect" secrecy
* If an adversary intercepts an encoded message, they gain no information, except for an upper bound on the message length
* To send message m, Alice xor's m with s, the secret: $c=m \oplus s$
- When Bob gets c , he xor's it with $\mathrm{s}: \mathrm{c} \oplus \mathrm{S}=\mathrm{m}$
*Why is it "perfect"?
- If we have c, the encrypted msg, then for every, m, an arbitrary msg of the same length, there is some secret, s, that when used to decode c yields m
- Example: c=0100011110100... (the same c as before)

$$
\begin{aligned}
& \mathrm{m}=0110111011100 \ldots \text {... } \text { (a different } \mathrm{m} \text {) } \\
& \mathrm{s}=0010100101000 . . . \quad \text { (the corresponding } \mathrm{s})
\end{aligned}
$$

$\mathrm{C} \oplus \mathrm{S}=0110111011100$...

Slides by Pete Manolios for CS2800, Logic \& Computation, NU 2019

