
Logic and Computation – CS 2800
Fall 2019

Lecture 11
Propositional logic continued

The SAT problem

Stavros Tripakis

Outline

• The SAT problem
• P vs NP
• The power of XOR – a bit of cryptography

Tripakis Logic and Computation, Fall 2019 2

P vs NP and the SAT problem

Tripakis Logic and Computation, Fall 2019 3

Motivating questions

• Is it possible to check automatically whether a
given Boolean formula is satisfiable?

• Yes:
1. Build the truth table of the formula
2. Check whether there is at least one “T” in the last

column
3. The row which has the “T” gives a satisfying assignment

Tripakis Logic and Computation, Fall 2019 4

Motivating questions

• Is it possible to check automatically whether a
given Boolean formula is satisfiable?

• Yes: e.g., build the truth table
• Is this an easy problem? Is the truth-table method a

good one? How big is the truth table?
• If the formula has N variables, the size of the truth

table is
—
—
—

Tripakis Logic and Computation, Fall 2019 5

P vs NP

• P = the class of efficiently (polynomial-time)
computable problems

• NP = the class of problems whose solution can be
checked efficiently (in polynomial-time)

• Every problem in P is also in NP: P NP – why?
— Note that P and NP are sets of problems

• Most computer scientists believe that NP P
• But nobody has been able to prove that yet!

Tripakis Logic and Computation, Fall 2019 6

Clay institute “millennium problems”

Tripakis Logic and Computation, Fall 2019 7

The Hamiltonian path problem

Tripakis Logic and Computation, Fall 2019 8

Figure taken from https://www.hackerearth.com/practice/algorithms/graphs/hamiltonian-path/tutorial/

Given a graph, does there exist a path that visits all nodes exactly once?

This graph has no Hamiltonian path:

This graph has two Hamiltonian paths:

What does NP P mean?

• We know that: P NP
• So NP P means P NP: P is a strict subset of NP
• i.e., there exists at least one problem in NP, that is

not in P

• We know many problems that are in NP, but we
haven’t yet found one that we can prove is not in P

Tripakis Logic and Computation, Fall 2019 9

The SAT problem

• The Boolean satisfiability (SAT) problem: given a
Boolean (propositional logic) formula , check whether

is satisfiable.

• Fact: SAT is in NP. Why?

• If you give me an assignment, I can easily check
whether it’s a satisfying assignment for :
1. Replace all the variables in by their values as given by the

assignment – this is linear in the length of
2. Evaluate the resulting formula (which only has constants)
3. Evaluating a formula is efficient too: polynomial in the length

of the formula

Tripakis Logic and Computation, Fall 2019 10

The SAT problem

• The Boolean satisfiability (SAT) problem: given a
Boolean (propositional logic) formula , check whether

is satisfiable.

• Theorem [Cook-Levin ~1970]: SAT is NP-complete

• What this means is:
1. SAT is in NP.
2. Every other problem in NP is no harder than SAT: if you can

solve SAT, you can solve any other problem in NP with pretty
much the same computational cost.

Tripakis Logic and Computation, Fall 2019 11

Reducing Hamiltonian path to SAT

• If I could solve SAT efficiently (in polynomial time)
then I could also solve Hamiltonian path efficiently.

• How?
• Idea: Given a graph, create a Boolean formula such

that the graph has a Hamiltonian path iff the
formula is satisfiable.

• How?

Tripakis Logic and Computation, Fall 2019 12

Reducing Hamiltonian path to SAT

• Idea: Given a graph, create a Boolean formula such
that the graph has a Hamiltonian path iff the
formula is satisfiable.

• Let be the number of nodes in the graph.
• The formula will have propositional variables:

for
• Variable means: graph node i appears at

position j in the Hamiltonian path
• Now all that remains is to encode the constraints of

what it means to be a valid Hamiltonian path!

Tripakis Logic and Computation, Fall 2019 13

Reducing Hamiltonian path to SAT

• : graph node i appears at position j in the
Hamiltonian path

• Hamiltonian path constraints for our example:
— Every graph node must appear in the path:

, , , , , , , ,

Tripakis Logic and Computation, Fall 2019 14

Reducing Hamiltonian path to SAT

• : graph node i appears at position j in the
Hamiltonian path

• Hamiltonian path constraints for our example:
— Every node appears exactly once:

Tripakis Logic and Computation, Fall 2019 15

, , , , , , , ,

, , , ,

Reducing Hamiltonian path to SAT

• : graph node i appears at position j in the
Hamiltonian path

• Hamiltonian path constraints for our example:
— Every position in the path is occupied by some

node:

, , , , , , , ,

Tripakis Logic and Computation, Fall 2019 16

Reducing Hamiltonian path to SAT

• : graph node i appears at position j in the
Hamiltonian path

• Hamiltonian path constraints for our example:
— Two nodes cannot occupy the same position:

, , , ,

 , , , ,

Tripakis Logic and Computation, Fall 2019 17

Reducing Hamiltonian path to SAT

• : graph node i appears at position j in the
Hamiltonian path

• Hamiltonian path constraints for our example:
— If two nodes are adjacent in the path, then there

must be an edge between them in the graph:

Tripakis Logic and Computation, Fall 2019 18

, , , ,

The SAT problem

• Putting it all together:
1. We don’t know if SAT is in P
2. The question whether SAT is in P is equivalent to the

question whether P = NP
3. Many combinatorial problems can be reduced to SAT
4. SAT is a very important problem!

Tripakis Logic and Computation, Fall 2019 19

SAT solvers

• Tools that check Boolean satisfiability
• Impressive progress in the last 20 years
• Today: SAT solvers can solve formulas with millions

of variables!
• How many assignments does a formula with a

million variables have?
—

• See paper “Boolean Satisfiability: From Theoretical
Hardness to Practical Success”, by Malik and Zhang,
CACM 2009

Tripakis Logic and Computation, Fall 2019 20

Tripakis Logic and Computation, Fall 2019 21https://www.cs.helsinki.fi/u/mjarvisa/papers/jarvisalo-leberre-roussel-simon.aimag.pdf

Can I use ACL2s as a SAT solver?

• Can I use ACL2s as a completely automated SAT
solver, and how?
— Demo

Tripakis Logic and Computation, Fall 2019 22

Quiz

• Suppose you are given a tool that checks VALIDITY
— Given a formula , the tool returns YES if is valid, and

NO if is not valid.
— Let VALID?() be the result of the tool.

• Can you use this tool to check whether is
FALSIFIABLE, and how?
A. No, it cannot be done
B. Yes, FALSIFIABLE() := (VALID?() = NO)
C. Yes, FALSIFIABLE() := (VALID?() = NO)
D. Yes, FALSIFIABLE() := (VALID?() = YES)

Tripakis Logic and Computation, Fall 2019 23

Quiz

• Suppose you are given a tool that checks VALIDITY
— Given a formula , the tool returns YES if is valid, and

NO if is not valid.
— Let VALID?() be the result of the tool.

• Can you use this tool to check whether is
SATISFIABLE, and how?
A. No, it cannot be done
B. Yes, SATISFIABLE() := (VALID?() = YES)
C. Yes, SATISFIABLE() := (VALID?() = NO)
D. Yes, SATISFIABLE() := (VALID?() = YES)
E. Yes, SATISFIABLE() := (VALID?() = NO)

Tripakis Logic and Computation, Fall 2019 24

Going further on SAT/SMT solvers

• Going further:
— http://www.satcompetition.org/
— https://www.cs.helsinki.fi/u/mjarvisa/papers/jarvisalo-

leberre-roussel-simon.aimag.pdf
— Proceedings of SAT COMPETITION 2018: Solver and

Benchmark Descriptions:
https://helda.helsinki.fi/bitstream/handle/10138/23706
3/sc2018_proceedings.pdf?sequence=6

— Prof. Manolios’ CS-4820 class

• SMT solvers:
— E.g., Z3: https://rise4fun.com/Z3/tutorial/guide

Tripakis Logic and Computation, Fall 2019 25

A bit of cryptography – the
power of XOR
See extra slides by Pete Manolios

Tripakis Logic and Computation, Fall 2019 26

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

The Power of Xor
You have probably seen movies with the “red telephone” that
connects the Pentagon with the Kremlin

A classic is Dr. Strangelove

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

The Red Phone

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

The Power of Xor

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

The Power of Xor
You have probably seen movies with the “red telephone” that
connects the Pentagon with the Kremlin
A classic is Dr. Strangelove
View https://www.youtube.com/watch?v=VEB-OoUrNuk to 1:24

https://www.youtube.com/watch?v=VEB-OoUrNuk

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

The Power of Xor
You have probably seen movies with the “red telephone” that
connects the Pentagon with the Kremlin
A classic is Dr. Strangelove
View https://www.youtube.com/watch?v=VEB-OoUrNuk to 1:24
There was no red phone but there was a teletype-based
encryption mechanism in place between the US and USSR that
used the encryption method we will cover next

https://www.youtube.com/watch?v=VEB-OoUrNuk

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Cryptography

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Cryptography
Goal: secret communication

crypto, graphy are Greek for hidden, writing

Date back to Egypt (1900 BCE)
Used for commerce, war, love letters, religion, …

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Cryptography
Goal: secret communication

crypto, graphy are Greek for hidden, writing

Date back to Egypt (1900 BCE)
Used for commerce, war, love letters, religion, …
Examples

Scytale: Archilochus 7th century BC

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Cryptography
Goal: secret communication

crypto, graphy are Greek for hidden, writing

Date back to Egypt (1900 BCE)
Used for commerce, war, love letters, religion, …
Examples

Scytale: Archilochus 7th century BC
Caesar Shift Cipher: shift letters by some number
Confederate Cipher Disc: Civil War

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Cryptography
Goal: secret communication

crypto, graphy are Greek for hidden, writing

Date back to Egypt (1900 BCE)
Used for commerce, war, love letters, religion, …
Examples

Scytale: Archilochus 7th century BC
Caesar Shift Cipher: shift letters by some number
Confederate Cipher Disc: Civil War
Enigma: used by Germany in WWII
Breaking Enigma shortened the war (Turing et al)

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Exercise

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Exercise
You got the following encrypted message. Decrypt it.

Uif tfdsfu pshbojabujpo nffut upojhiu

Quiz: A. I got it! B: This is hard!

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Exercise
You got the following encrypted message. Decrypt it.

Uif tfdsfu pshbojabujpo nffut upojhiu

Quiz: A. I got it! B: This is hard!
Frequency analysis: the most common letters are e, t

u: 6

f: 5

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Exercise
You got the following encrypted message. Decrypt it.

Uif tfdsfu pshbojabujpo nffut upojhiu

Quiz: A. I got it! B: This is hard!
Frequency analysis: the most common letters are e, t

u: 6

f: 5

Hint: Caesar Shift Cipher: shift letters by some number

Shift by 16, 1

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Exercise
You got the following encrypted message. Decrypt it.

Uif tfdsfu pshbojabujpo nffut upojhiu

Quiz: A. I got it! B: This is hard!
Frequency analysis: the most common letters are e, t

u: 6

f: 5

Hint: Caesar Shift Cipher: shift letters by some number

Shift by 16, 1

Answer? The secret organization meets tonight

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

One-Time Pad

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

One-Time Pad
Allow us to encrypt messages with “perfect” secrecy

If an adversary intercepts an encoded message, they gain no
information, except for an upper bound on the message length

Compare: RSA can be broken, with enough computational resources

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

One-Time Pad
Allow us to encrypt messages with “perfect” secrecy

If an adversary intercepts an encoded message, they gain no
information, except for an upper bound on the message length

Compare: RSA can be broken, with enough computational resources

A message is a sequence of bits, say 0’s & 1’s. Any ideas?

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

One-Time Pad
Allow us to encrypt messages with “perfect” secrecy

If an adversary intercepts an encoded message, they gain no
information, except for an upper bound on the message length

Compare: RSA can be broken, with enough computational resources

A message is a sequence of bits, say 0’s & 1’s. Any ideas?
Alice and Bob agree on a secret, a sequence of random 0’s & 1’s

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

One-Time Pad
Allow us to encrypt messages with “perfect” secrecy

If an adversary intercepts an encoded message, they gain no
information, except for an upper bound on the message length

Compare: RSA can be broken, with enough computational resources

A message is a sequence of bits, say 0’s & 1’s. Any ideas?
Alice and Bob agree on a secret, a sequence of random 0’s & 1’s
To send message m, Alice xor’s m with s, the secret: c = m⊕s

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

One-Time Pad
Allow us to encrypt messages with “perfect” secrecy

If an adversary intercepts an encoded message, they gain no
information, except for an upper bound on the message length

Compare: RSA can be broken, with enough computational resources

A message is a sequence of bits, say 0’s & 1’s. Any ideas?
Alice and Bob agree on a secret, a sequence of random 0’s & 1’s
To send message m, Alice xor’s m with s, the secret: c = m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

One-Time Pad
Allow us to encrypt messages with “perfect” secrecy

If an adversary intercepts an encoded message, they gain no
information, except for an upper bound on the message length

Compare: RSA can be broken, with enough computational resources

A message is a sequence of bits, say 0’s & 1’s. Any ideas?
Alice and Bob agree on a secret, a sequence of random 0’s & 1’s
To send message m, Alice xor’s m with s, the secret: c = m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m

Example: m=1001000100011…

 s=1101011010111…

 c=0100011110100…

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

One-Time Pad
Allow us to encrypt messages with “perfect” secrecy

If an adversary intercepts an encoded message, they gain no
information, except for an upper bound on the message length

Compare: RSA can be broken, with enough computational resources

A message is a sequence of bits, say 0’s & 1’s. Any ideas?
Alice and Bob agree on a secret, a sequence of random 0’s & 1’s
To send message m, Alice xor’s m with s, the secret: c = m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m

Example: m=1001000100011…

 s=1101011010111…

 c=0100011110100…
 c⊕s=1001000100011…

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

One-Time Pad

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

One-Time Pad
Allow us to encrypt messages with "perfect" secrecy

If an adversary intercepts an encoded message, they gain no information,
except for an upper bound on the message length

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

One-Time Pad
Allow us to encrypt messages with "perfect" secrecy

If an adversary intercepts an encoded message, they gain no information,
except for an upper bound on the message length

To send message m, Alice xor’s m with s, the secret: c= m⊕s

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

One-Time Pad
Allow us to encrypt messages with "perfect" secrecy

If an adversary intercepts an encoded message, they gain no information,
except for an upper bound on the message length

To send message m, Alice xor’s m with s, the secret: c= m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

One-Time Pad
Allow us to encrypt messages with "perfect" secrecy

If an adversary intercepts an encoded message, they gain no information,
except for an upper bound on the message length

To send message m, Alice xor’s m with s, the secret: c= m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m

Why is it “perfect”?

If we have c, the encrypted msg, then for every, m, an arbitrary msg of the
same length, there is some secret, s, that when used to decode c yields m

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

One-Time Pad
Allow us to encrypt messages with "perfect" secrecy

If an adversary intercepts an encoded message, they gain no information,
except for an upper bound on the message length

To send message m, Alice xor’s m with s, the secret: c= m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m

Why is it “perfect”?

If we have c, the encrypted msg, then for every, m, an arbitrary msg of the
same length, there is some secret, s, that when used to decode c yields m

Example: c=0100011110100… (the same c as before)

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

One-Time Pad
Allow us to encrypt messages with "perfect" secrecy

If an adversary intercepts an encoded message, they gain no information,
except for an upper bound on the message length

To send message m, Alice xor’s m with s, the secret: c= m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m

Why is it “perfect”?

If we have c, the encrypted msg, then for every, m, an arbitrary msg of the
same length, there is some secret, s, that when used to decode c yields m

Example: c=0100011110100… (the same c as before)

 m=0110111011100… (a different m)

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

One-Time Pad
Allow us to encrypt messages with "perfect" secrecy

If an adversary intercepts an encoded message, they gain no information,
except for an upper bound on the message length

To send message m, Alice xor’s m with s, the secret: c= m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m

Why is it “perfect”?

If we have c, the encrypted msg, then for every, m, an arbitrary msg of the
same length, there is some secret, s, that when used to decode c yields m

Example: c=0100011110100… (the same c as before)

 m=0110111011100… (a different m)

 s=0010100101000… (the corresponding s)

Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

One-Time Pad
Allow us to encrypt messages with "perfect" secrecy

If an adversary intercepts an encoded message, they gain no information,
except for an upper bound on the message length

To send message m, Alice xor’s m with s, the secret: c= m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m

Why is it “perfect”?

If we have c, the encrypted msg, then for every, m, an arbitrary msg of the
same length, there is some secret, s, that when used to decode c yields m

Example: c=0100011110100… (the same c as before)

 m=0110111011100… (a different m)

 s=0010100101000… (the corresponding s)

 c⊕s=0110111011100…

