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Outline

• The SAT problem
• P vs NP
• The power of XOR – a bit of cryptography
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P vs NP and the SAT problem
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Motivating questions

• Is it possible to check automatically whether a 
given Boolean formula is satisfiable?

• Yes:
1. Build the truth table of the formula
2. Check whether there is at least one “T” in the last 

column
3. The row which has the “T” gives a satisfying assignment
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Motivating questions

• Is it possible to check automatically whether a 
given Boolean formula is satisfiable?

• Yes: e.g., build the truth table
• Is this an easy problem? Is the truth-table method a 

good one? How big is the truth table?
• If the formula has N variables, the size of the truth 

table is 
—
—
—
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P vs NP

• P = the class of efficiently (polynomial-time) 
computable problems

• NP = the class of problems whose solution can be 
checked efficiently (in polynomial-time)

• Every problem in P is also in NP: P NP – why?
— Note that P and NP are sets of problems

• Most computer scientists believe that NP P
• But nobody has been able to prove that yet!
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Clay institute “millennium problems”
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The Hamiltonian path problem
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Figure taken from https://www.hackerearth.com/practice/algorithms/graphs/hamiltonian-path/tutorial/

Given a graph, does there exist a path that visits all nodes exactly once?

This graph has no Hamiltonian path:

This graph has two Hamiltonian paths:



What does NP P mean?

• We know that: P NP 
• So NP P means P NP: P is a strict subset of NP
• i.e., there exists at least one problem in NP, that is 

not in P

• We know many problems that are in NP, but we 
haven’t yet found one that we can prove is not in P
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The SAT problem

• The Boolean satisfiability (SAT) problem: given a 
Boolean (propositional logic) formula , check whether 

is satisfiable.

• Fact: SAT is in NP. Why?

• If you give me an assignment, I can easily check 
whether it’s a satisfying assignment for :
1. Replace all the variables in by their values as given by the 

assignment – this is linear in the length of 
2. Evaluate the resulting formula (which only has constants)
3. Evaluating a formula is efficient too: polynomial in the length 

of the formula
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The SAT problem

• The Boolean satisfiability (SAT) problem: given a 
Boolean (propositional logic) formula , check whether 

is satisfiable.

• Theorem [Cook-Levin ~1970]: SAT is NP-complete

• What this means is:
1. SAT is in NP.
2. Every other problem in NP is no harder than SAT: if you can 

solve SAT, you can solve any other problem in NP with pretty 
much the same computational cost.
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Reducing Hamiltonian path to SAT

• If I could solve SAT efficiently (in polynomial time) 
then I could also solve Hamiltonian path efficiently.

• How?
• Idea: Given a graph, create a Boolean formula such 

that the graph has a Hamiltonian path iff the 
formula is satisfiable.

• How?
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Reducing Hamiltonian path to SAT

• Idea: Given a graph, create a Boolean formula such 
that the graph has a Hamiltonian path iff the 
formula is satisfiable.

• Let be the number of nodes in the graph.
• The formula will have propositional variables: 

for 
• Variable means: graph node i appears at 

position j in the Hamiltonian path 
• Now all that remains is to encode the constraints of 

what it means to be a valid Hamiltonian path!
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Reducing Hamiltonian path to SAT

• : graph node i appears at position j in the 
Hamiltonian path 

• Hamiltonian path constraints for our example:
— Every graph node must appear in the path:

, , , , , , , ,
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Reducing Hamiltonian path to SAT

• : graph node i appears at position j in the 
Hamiltonian path 

• Hamiltonian path constraints for our example:
— Every node appears exactly once:
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Reducing Hamiltonian path to SAT

• : graph node i appears at position j in the 
Hamiltonian path 

• Hamiltonian path constraints for our example:
— Every position in the path is occupied by some 

node:

, , , , , , , ,
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Reducing Hamiltonian path to SAT

• : graph node i appears at position j in the 
Hamiltonian path 

• Hamiltonian path constraints for our example:
— Two nodes cannot occupy the same position:

, , , ,

 , , , ,
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Reducing Hamiltonian path to SAT

• : graph node i appears at position j in the 
Hamiltonian path 

• Hamiltonian path constraints for our example:
— If two nodes are adjacent in the path, then there 

must be an edge between them in the graph:
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The SAT problem

• Putting it all together:
1. We don’t know if SAT is in P
2. The question whether SAT is in P is equivalent to the 

question whether P = NP
3. Many combinatorial problems can be reduced to SAT
4. SAT is a very important problem!
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SAT solvers

• Tools that check Boolean satisfiability 
• Impressive progress in the last 20 years 
• Today: SAT solvers can solve formulas with millions 

of variables!
• How many assignments does a formula with a 

million variables have?
—

• See paper “Boolean Satisfiability: From Theoretical 
Hardness to Practical Success”, by Malik and Zhang, 
CACM 2009
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Can I use ACL2s as a SAT solver?

• Can I use ACL2s as a completely automated SAT 
solver, and how?
— Demo
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Quiz 

• Suppose you are given a tool that checks VALIDITY
— Given a formula , the tool returns YES if is valid, and 

NO if is not valid.
— Let VALID?( ) be the result of the tool.

• Can you use this tool to check whether is 
FALSIFIABLE, and how?
A. No, it cannot be done
B. Yes, FALSIFIABLE( ) :=  (VALID?( ) = NO)
C. Yes, FALSIFIABLE( ) :=  (VALID?( ) = NO)
D. Yes, FALSIFIABLE( ) :=  (VALID?( ) = YES)
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Quiz 

• Suppose you are given a tool that checks VALIDITY
— Given a formula , the tool returns YES if is valid, and 

NO if is not valid.
— Let VALID?( ) be the result of the tool.

• Can you use this tool to check whether is 
SATISFIABLE, and how?
A. No, it cannot be done
B. Yes, SATISFIABLE( ) :=  (VALID?( ) = YES)
C. Yes, SATISFIABLE( ) :=  (VALID?( ) = NO)
D. Yes, SATISFIABLE( ) :=  (VALID?( ) = YES)
E. Yes, SATISFIABLE( ) :=  (VALID?( ) = NO)
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Going further on SAT/SMT solvers

• Going further:
— http://www.satcompetition.org/
— https://www.cs.helsinki.fi/u/mjarvisa/papers/jarvisalo-

leberre-roussel-simon.aimag.pdf
— Proceedings of SAT COMPETITION 2018: Solver and 

Benchmark Descriptions: 
https://helda.helsinki.fi/bitstream/handle/10138/23706
3/sc2018_proceedings.pdf?sequence=6

— Prof. Manolios’ CS-4820 class

• SMT solvers:
— E.g., Z3: https://rise4fun.com/Z3/tutorial/guide
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A bit of cryptography – the 
power of XOR
See extra slides by Pete Manolios
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Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

The Power of Xor
You have probably seen movies with the “red telephone” that 
connects the Pentagon with the Kremlin

A classic is Dr. Strangelove
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The Red Phone
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The Power of Xor
You have probably seen movies with the “red telephone” that 
connects the Pentagon with the Kremlin
A classic is Dr. Strangelove
View https://www.youtube.com/watch?v=VEB-OoUrNuk to 1:24

https://www.youtube.com/watch?v=VEB-OoUrNuk
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The Power of Xor
You have probably seen movies with the “red telephone” that 
connects the Pentagon with the Kremlin
A classic is Dr. Strangelove
View https://www.youtube.com/watch?v=VEB-OoUrNuk to 1:24
There was no red phone but there was a teletype-based 
encryption mechanism in place between the US and USSR that 
used the encryption method we will cover next

https://www.youtube.com/watch?v=VEB-OoUrNuk
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Cryptography
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Cryptography
Goal: secret communication

crypto, graphy are Greek for hidden, writing

Date back to Egypt (1900 BCE)
Used for commerce, war, love letters, religion, …
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Cryptography
Goal: secret communication

crypto, graphy are Greek for hidden, writing

Date back to Egypt (1900 BCE)
Used for commerce, war, love letters, religion, …
Examples 

Scytale: Archilochus 7th century BC
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Cryptography
Goal: secret communication

crypto, graphy are Greek for hidden, writing

Date back to Egypt (1900 BCE)
Used for commerce, war, love letters, religion, …
Examples 

Scytale: Archilochus 7th century BC
Caesar Shift Cipher: shift letters by some number
Confederate Cipher Disc: Civil War
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Cryptography
Goal: secret communication

crypto, graphy are Greek for hidden, writing

Date back to Egypt (1900 BCE)
Used for commerce, war, love letters, religion, …
Examples 

Scytale: Archilochus 7th century BC
Caesar Shift Cipher: shift letters by some number
Confederate Cipher Disc: Civil War
Enigma: used by Germany in WWII
Breaking Enigma shortened the war (Turing et al)
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Exercise
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Exercise
You got the following encrypted message. Decrypt it.


Uif tfdsfu pshbojabujpo nffut upojhiu

Quiz: A. I got it! B: This is hard!
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Exercise
You got the following encrypted message. Decrypt it.


Uif tfdsfu pshbojabujpo nffut upojhiu

Quiz: A. I got it! B: This is hard!
Frequency analysis: the most common letters are e, t


u: 6

f: 5



Slides by Pete Manolios for CS2800, Logic & Computation, NU 2019

Exercise
You got the following encrypted message. Decrypt it.


Uif tfdsfu pshbojabujpo nffut upojhiu

Quiz: A. I got it! B: This is hard!
Frequency analysis: the most common letters are e, t


u: 6

f: 5

Hint: Caesar Shift Cipher: shift letters by some number

Shift by 16, 1
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Exercise
You got the following encrypted message. Decrypt it.


Uif tfdsfu pshbojabujpo nffut upojhiu

Quiz: A. I got it! B: This is hard!
Frequency analysis: the most common letters are e, t


u: 6

f: 5

Hint: Caesar Shift Cipher: shift letters by some number

Shift by 16, 1

Answer? The secret organization meets tonight
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One-Time Pad
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One-Time Pad
Allow us to encrypt messages with “perfect” secrecy


If an adversary intercepts an encoded message, they gain no 
information, except for an upper bound on the message length

Compare: RSA can be broken, with enough computational resources
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One-Time Pad
Allow us to encrypt messages with “perfect” secrecy


If an adversary intercepts an encoded message, they gain no 
information, except for an upper bound on the message length

Compare: RSA can be broken, with enough computational resources

A message is a sequence of bits, say 0’s & 1’s. Any ideas?
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One-Time Pad
Allow us to encrypt messages with “perfect” secrecy


If an adversary intercepts an encoded message, they gain no 
information, except for an upper bound on the message length

Compare: RSA can be broken, with enough computational resources

A message is a sequence of bits, say 0’s & 1’s. Any ideas?
Alice and Bob agree on a secret, a sequence of random 0’s & 1’s
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One-Time Pad
Allow us to encrypt messages with “perfect” secrecy


If an adversary intercepts an encoded message, they gain no 
information, except for an upper bound on the message length

Compare: RSA can be broken, with enough computational resources

A message is a sequence of bits, say 0’s & 1’s. Any ideas?
Alice and Bob agree on a secret, a sequence of random 0’s & 1’s
To send message m, Alice xor’s m with s, the secret: c = m⊕s
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One-Time Pad
Allow us to encrypt messages with “perfect” secrecy


If an adversary intercepts an encoded message, they gain no 
information, except for an upper bound on the message length

Compare: RSA can be broken, with enough computational resources

A message is a sequence of bits, say 0’s & 1’s. Any ideas?
Alice and Bob agree on a secret, a sequence of random 0’s & 1’s
To send message m, Alice xor’s m with s, the secret: c = m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m
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One-Time Pad
Allow us to encrypt messages with “perfect” secrecy


If an adversary intercepts an encoded message, they gain no 
information, except for an upper bound on the message length

Compare: RSA can be broken, with enough computational resources

A message is a sequence of bits, say 0’s & 1’s. Any ideas?
Alice and Bob agree on a secret, a sequence of random 0’s & 1’s
To send message m, Alice xor’s m with s, the secret: c = m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m

Example:  m=1001000100011…

           s=1101011010111…

           c=0100011110100…
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One-Time Pad
Allow us to encrypt messages with “perfect” secrecy


If an adversary intercepts an encoded message, they gain no 
information, except for an upper bound on the message length

Compare: RSA can be broken, with enough computational resources

A message is a sequence of bits, say 0’s & 1’s. Any ideas?
Alice and Bob agree on a secret, a sequence of random 0’s & 1’s
To send message m, Alice xor’s m with s, the secret: c = m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m

Example:  m=1001000100011…

           s=1101011010111…

           c=0100011110100…
         c⊕s=1001000100011…
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One-Time Pad
Allow us to encrypt messages with "perfect" secrecy


If an adversary intercepts an encoded message, they gain no information, 
except for an upper bound on the message length
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One-Time Pad
Allow us to encrypt messages with "perfect" secrecy


If an adversary intercepts an encoded message, they gain no information, 
except for an upper bound on the message length

To send message m, Alice xor’s m with s, the secret: c= m⊕s
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One-Time Pad
Allow us to encrypt messages with "perfect" secrecy


If an adversary intercepts an encoded message, they gain no information, 
except for an upper bound on the message length

To send message m, Alice xor’s m with s, the secret: c= m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m
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One-Time Pad
Allow us to encrypt messages with "perfect" secrecy


If an adversary intercepts an encoded message, they gain no information, 
except for an upper bound on the message length

To send message m, Alice xor’s m with s, the secret: c= m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m

Why is it “perfect”? 

If we have c, the encrypted msg, then for every, m, an arbitrary msg of the 
same length, there is some secret, s, that when used to decode c yields m 
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One-Time Pad
Allow us to encrypt messages with "perfect" secrecy


If an adversary intercepts an encoded message, they gain no information, 
except for an upper bound on the message length

To send message m, Alice xor’s m with s, the secret: c= m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m

Why is it “perfect”? 

If we have c, the encrypted msg, then for every, m, an arbitrary msg of the 
same length, there is some secret, s, that when used to decode c yields m 

Example:  c=0100011110100… (the same c as before)
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One-Time Pad
Allow us to encrypt messages with "perfect" secrecy


If an adversary intercepts an encoded message, they gain no information, 
except for an upper bound on the message length

To send message m, Alice xor’s m with s, the secret: c= m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m

Why is it “perfect”? 

If we have c, the encrypted msg, then for every, m, an arbitrary msg of the 
same length, there is some secret, s, that when used to decode c yields m 

Example:  c=0100011110100… (the same c as before)

           m=0110111011100… (a different m)
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One-Time Pad
Allow us to encrypt messages with "perfect" secrecy


If an adversary intercepts an encoded message, they gain no information, 
except for an upper bound on the message length

To send message m, Alice xor’s m with s, the secret: c= m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m

Why is it “perfect”? 

If we have c, the encrypted msg, then for every, m, an arbitrary msg of the 
same length, there is some secret, s, that when used to decode c yields m 

Example:  c=0100011110100… (the same c as before)

           m=0110111011100… (a different m)

           s=0010100101000… (the corresponding s)
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One-Time Pad
Allow us to encrypt messages with "perfect" secrecy


If an adversary intercepts an encoded message, they gain no information, 
except for an upper bound on the message length

To send message m, Alice xor’s m with s, the secret: c= m⊕s

When Bob gets c, he xor’s it with s: c⊕s = m

Why is it “perfect”? 

If we have c, the encrypted msg, then for every, m, an arbitrary msg of the 
same length, there is some secret, s, that when used to decode c yields m 

Example:  c=0100011110100… (the same c as before)

           m=0110111011100… (a different m)

           s=0010100101000… (the corresponding s)

         c⊕s=0110111011100…




