
Logic and Computation – CS 2800
Fall 2019

Lecture 10
Propositional logic

Stavros Tripakis



Outline 

• Logic: a brief history
• Propositional logic
• Truth tables
• Satisfiability and validity

Tripakis Logic and Computation, Fall 2019 2



Logic 

Tripakis Logic and Computation, Fall 2019 3



Logic
From Old French logike, from Latin logica, from Ancient Greek λογική (logikḗ, “logic”), from feminine of λογικός
(logikós, “of or pertaining to speech or reason or reasoning, rational, reasonable”), from λόγος (lógos, “speech, 
reason”).

• What is logic?
— A mathematical language: precise, unambiguous
— A set of reasoning tools: deductions, proofs, …

• Why is logic important?
— Foundation of mathematics
— Foundation of computer science
— Foundation of language? reason? intelligence? 

Tripakis Logic and Computation, Fall 2019 4



Logic – a brief history

• Very old:
— Aristotle (384-322 BCE): syllogistic logic
— His “Organon” books were the foundations of logic for 2000 

years
— Kant 1787: “logic ..., since Aristotle, has been unable to 

advance a step and, thus, to all appearance has reached its 
completion.”

— Logic historian Karl von Prantl (1820-1888) claimed that any 
logician who said anything new about logic was "confused, 
stupid or perverse.“

• Very new:
— Russell’s paradox (1901)
— Zermelo-Fraenkel set theory (1908-1920s)
— Type theory (1908 – today)
— Gödel’s incompleteness theorem (1930)
— Turing machines (1936)

Tripakis Logic and Computation, Fall 2019 5



Tripakis Logic and Computation, Fall 2019 6



Propositional logic

Tripakis Logic and Computation, Fall 2019 7



Propositional logic = Boolean logic

• George Boole (1815-1864)
— Boolean algebra (1847)

• What’s the simplest possible arithmetic?
— Empty set? Set of one element? They are trivial.
— Booleans = set of two elements = {true, false} = {T,F} = {0,1} = 

= { t, nil} = …
— Now our arithmetic becomes more interesting
— There are many functions from Booleans to Booleans 

• Rich domain, impressive list of applications
— Logic, circuit design, SAT, verification, scheduling, AI, game 

theory, reliability, security, …

Tripakis Logic and Computation, Fall 2019 8



Boolean expressions
• The expressions of propositional logic

— Recall: logic = language = set of expressions
— To have a precise, unambiguous language, we must first define 

what are the syntactically valid expressions

• Atomic expressions:
— The constants true and false (or 0 and 1, or t and nil, …)
— Propositional atoms or variables: p, q, r, …, or a, b, c, …, or x, y, z, …

• Composite expressions:
— If and are Boolean expressions, then we can combine them 

using the Boolean/propositional logic operators:
o Negation:                     ¬𝜙 (“not 𝜙”)
o Conjunction:                𝜙 ∧ 𝜓 (“𝜙 and 𝜓”)
o Disjunction :                 𝜙 ∨ 𝜓 (“𝜙 or 𝜓”)
o Implication :                 𝜙 → 𝜓 (“𝜙 implies 𝜓”),  also written 𝜙 ⇒ 𝜓
o Equivalence :                𝜙 ≡ 𝜓 (“𝜙 iff 𝜓”), also written 𝜙 ↔ 𝜓
o Exclusive or (xor) :       𝜙⊕𝜓 (“𝜙 xor 𝜓”)

Tripakis Logic and Computation, Fall 2019 9



Boolean expressions

• Boolean expressions are really trees:

• To avoid ambiguities, use parentheses
— e.g.,  

Tripakis Logic and Computation, Fall 2019 10



Quiz 

• Consider the expressions: 

Tripakis Logic and Computation, Fall 2019 11

A. All of them are syntactically valid
B. None of them are syntactically valid
C. Two are valid, two are invalid
D. Only one is valid



Quiz 

• Consider the expression: 

A. It is syntactically valid and unambiguous
B. It is syntactically valid but ambiguous
C. It is not syntactically valid

Tripakis Logic and Computation, Fall 2019 12



Parentheses 

• Boolean expressions are really trees:

• To avoid ambiguities, use parentheses
— e.g.,  

• When there is no ambiguity, don’t use parentheses!
— e.g.,  – why? 

Tripakis Logic and Computation, Fall 2019 13



Precedence rules
• Sometimes we end up with too many parentheses

— e.g.,  

• To avoid having to write too many parentheses, we establish 
precedence rules:
— Negation binds strongest
— Followed by conjunction and disjunction, 
— Followed by implication 
— Followed by iff and xor, 

• So we can rewrite the above equivalently as
—

Tripakis Logic and Computation, Fall 2019 14

But: to me this is too confusing…
Often hard to remember the rules.

Use parentheses reasonably.
You will never be penalized for using “too many” parentheses

(unless we explicitly ask you to remove parentheses, as an exercise).



Quiz 
• Precedence rules:

— Negation binds strongest
— Followed by conjunction and disjunction, 
— Followed by implication 
— Followed by iff and xor, 

• Is this ambiguous?        
A. Yeah
B. Nope 

Tripakis Logic and Computation, Fall 2019 15



Syntax and semantics

• We have seen the syntax of propositional logic: 
Boolean expressions

• But what do these expressions mean?

• Propositional logic semantics:
— Boolean functions
— Can be represented as truth tables

Tripakis Logic and Computation, Fall 2019 16



Truth tables of basic Boolean operators 

Tripakis Logic and Computation, Fall 2019 17

Can you think of a new (different) 
truth table for a new (different) 

binary operator? unary operator?



Quiz 

• Consider a Boolean operator over n propositional 
variables, i.e., an n-ary operator. How many rows 
does this operator have in its truth table?

A.
B.
C.
D.

E. none of the above

Tripakis Logic and Computation, Fall 2019 18



English usage

• In English “or” often means “exclusive or”
— E.g., “you can have ice cream or a cookie” (implied: but 

you can’t have both)
— In logic, or means at least one (see truth table!)
— If you want to have “either-or” (exclusive or) use xor

Tripakis Logic and Computation, Fall 2019 19



English usage

• True or false?
1. “if pigs can fly, then I am the president of the USA”
2. “if I am the president of the USA, then pigs can fly”
3. “if I am faculty at Northeastern, then pigs can fly”

• Answers:
1. True: pigs cannot fly
2. True: I am not president of the USA
3. False: I am faculty at Northeastern, and pigs can’t fly

— Truth table! (implication)
— Some English speakers might say that the first two statements are 

false, since I am not the president / pigs can’t fly
— Contrary to English, logic is precise => no debate

Tripakis Logic and Computation, Fall 2019 20



Tripakis Logic and Computation, Fall 2019 21

Rich => Smart ?
Smart => Rich ?
Smart Rich ?



Implication 

• Cannot overemphasize its importance in logic
— Make sure you understand its semantics
— Truth table!

• True or false?
— “if x is a natural number, then x>=0”

o True
o What about x=-1? Isn’t it a counter-example since -1<0 ?

• No, because -1 is NOT a natural number

o The only way to make false is to make true and false
o Truth table!

Tripakis Logic and Computation, Fall 2019 22

False => Anything!
False => False



A ternary operator: ite

Tripakis Logic and Computation, Fall 2019 23



Truth tables of Boolean formulas

• For every Boolean formula (= Boolean expression) 
we can construct its truth table
— E.g., for the formula    we get the 

truth table:

Tripakis Logic and Computation, Fall 2019 24

Assignment: assigns truth values to the 
propositional variables of the formula

Subformula: a subexpression (subtree)



Satisfiability and validity

Tripakis Logic and Computation, Fall 2019 25



Satisfiability and validity

• A Boolean formula (=Boolean expression) is:
— Satisfiable: when it is sometimes true
— Unsatisfiable: when it is never true
— Valid: when it is always true
— Falsifiable: when it is sometimes false

• “Sometimes”, “always”, “never” refer to the truth 
table of the formula:
— Sometimes: exists assignment to make the formula true
— Never: no assignment makes the formula true
— Always: all assignments make the formula true

Tripakis Logic and Computation, Fall 2019 26



Satisfiability and validity

• Every Boolean formula satisfies exactly two of the previous 
characterizations

• In particular, a Boolean formula is exactly one of the 
following:
— Satisfiable and valid: always true
— Satisfiable but not valid = satisfiable and falsifiable: sometimes true 

and sometimes false
— Unsatisfiable and falsifiable: always false

• Think of it as a lattice:

Tripakis Logic and Computation, Fall 2019 27

valid

unsatisfiable

neither



Examples 

• Think of examples of the three categories

• Valid:

• Satisfiable and falsifiable:

• Unsatisfiable:

Tripakis Logic and Computation, Fall 2019 28



Next time 

• Propositional logic continued

• Read Chapter 3, up to and including Section 3.6

Tripakis Logic and Computation, Fall 2019 29


