
Logic and Computation – CS 2800
Fall 2019

Lecture 9
Property-based testing continued

Stavros Tripakis



Outline 

• Property-based testing continued
— test? and thm

Tripakis Logic and Computation, Fall 2019 2



Testing vs proving
• Testing:

— We are asking the tool to generate many examples and test on 
each example whether property holds
o In this case, an example is one specific n

— The test passes if the tool cannot find an example violating the 
property: a counter-example

— More powerful than check= which tests just one example

• Theorem proving:

— We are asking the tool to prove that the property holds for every n
— More powerful than test? – why?
— Also theorem proving techniques fundamentally different from 

testing
Tripakis Logic and Computation, Fall 2019 3

(thm (implies (natp n)
(equal (even-natp n)

(even-intp n))))

(test? (implies (natp n)
(equal (even-natp n)

(even-intp n))))



Important: implicit for-all quantification in 
properties

• In the property below “for all n” is implied:

• This really means “for all n in the ACL2s universe”, 
not just “for all natural numbers n” !

Tripakis Logic and Computation, Fall 2019 4

(implies (natp n)
(equal (even-natp n)

(even-intp n)))



Summary: thm vs test?

• test? – possible outcomes:
— Counter-example: property does not hold (is false)
— All examples pass: property might or might not hold
— Proof: sometimes test? manages to actually prove 

the property => property holds (is true)

• thm – possible outcomes:
— Counter-example: property does not hold (is false)
— Unknown: thm could not prove it, did not find 

counter-example 
— Proof: property holds (is true)

Tripakis Logic and Computation, Fall 2019 5

test? fails

test? passes

thm passes

thm fails



Structure of properties
• Usually our properties will be of the form

• Usually H will be of the form

— Ri’s are recognizers and xi’s are variables appearing in C
— The second … can be some extra assumptions
— We must perform contract checking on all the non-recognizers in H

o i.e., the … after the recognizers must satisfy its contracts, assuming prior 
assumptions hold

• C can be any Boolean expression
— We must perform contract checking also for C
— All functions in C must satisfy their contracts, assuming H holds

Tripakis Logic and Computation, Fall 2019 6

(implies H C)

hypothesis conclusion

(and (R1 x1) (R2 x2) … (Rn xn) …)



Examples

Tripakis Logic and Computation, Fall 2019 7

(definec even-natp (x :nat) :bool
(natp (/ x 2)))

(test? (implies (natp n)
(equal (even-natp n)

(even-intp n))))

(definec even-intp (x: int) :bool
(integerp (/ x 2)))

Contract checking passes

(test? (implies (intp n)
(equal (even-natp n)

(even-intp n))))

Contract checking fails.
(even-natp n)

requires n to be a nat.
Result of test?
untrustworthy!



Examples

Tripakis Logic and Computation, Fall 2019 8

(definec even-natp (x :nat) :bool
(natp (/ x 2)))

(test? (implies (and (natp n) (< 20/3 n))
(equal (even-natp n)

(even-intp n))))

(definec even-intp (x: int) :bool
(integerp (/ x 2)))

Contract checking passes.
A nat is also a rational.

(test? (implies (< 20/3 n)
(equal (even-natp n)

(even-intp n))))

Contract checking fails.
(< 20/3 n)

requires n to be rational.



Examples

Tripakis Logic and Computation, Fall 2019 9

(definec even-natp (x :nat) :bool
(natp (/ x 2)))

(test? 
(implies 

(natp n)
(equal (even-natp n)

(even-intp n))))

(definec even-intp (x: int) :bool
(integerp (/ x 2)))

This property holds:

(test? 
(implies 

(and (intp n) (< n 0))
(equal (even-intp n)

(even-natp (* n -1)))))

What about this one?

(definec even-intp2 (x :int) :bool
(if (natp x)

(even-natp x)
(even-natp (* x -1))))

Alternative definition of even-intp:

Because of the two properties to the left,
these two definitions are equivalent.

How would you express this equivalence in ACL2s?



Examples

Tripakis Logic and Computation, Fall 2019 10

(definec even-natp (x :nat) :bool
(natp (/ x 2)))

(test? 
(implies 

(natp n)
(equal (even-natp n)

(even-intp n))))

(definec even-intp (x: int) :bool
(integerp (/ x 2)))

This property holds:

(test? 
(implies 

(and (intp n) (< n 0))
(equal (even-intp n)

(even-natp (* n -1)))))

What about this one?

(definec even-intp2 (x :int) :bool
(if (natp x)

(even-natp x)
(even-natp (* x -1))))

Alternative definition of even-intp:

Because of the two properties to the left,
these two definitions are equivalent.

We can express this as an ACL2s theorem:

(thm (implies
(intp x)
(equal (even-intp x)

(even-intp2 x))))



Contract checking in test?/thm and in functions

Tripakis Logic and Computation, Fall 2019 11

(definec even-natp (x :nat) :bool
(natp (/ x 2)))

(test? (implies (and (natp n) (< 20/3 n))
(equal (even-natp n)

(even-intp n))))

(definec even-intp (x: int) :bool
(integerp (/ x 2)))

Contract checking this

(defunc test1 (n)
:input-contract (and (natp n) (< 20/3 n))
:output-contract (booleanp (test1 n))
(equal (even-natp n)

(even-intp n)))

is the same as performing 
contract checking on this 

function:

In ACL2s the specification language is embedded into the programming language!



Quiz 

• Consider the following statement:

A. It is indeed a theorem
B. It is not a theorem
C. It does not even pass contract checking

Tripakis Logic and Computation, Fall 2019 12

(thm (equal (first x) (car x)))



Quiz 

• Consider the following incomplete statement:

• What can we put in the place of ??? to make the 
statement a true theorem?
A. (car x) 
B. (cdr x) 
C. (car (cdr x))
D. (cdr (car x))
E. Nothing. No matter what we put, it will not pass 

contract checking.

Tripakis Logic and Computation, Fall 2019 13

(thm (implies (listp x)
(equal (second x) ???)))



Demo 

• See file 09-property-testing.lisp

Tripakis Logic and Computation, Fall 2019 14



Next

• Propositional logic

Tripakis Logic and Computation, Fall 2019 15


