Logic and Computation - CS 2800 Fall 2019

Lecture 9

Property-based testing continued

Stavros Tripakis

Northeastern University Khoury College of
Computer Sciences

Outline

- Property-based testing continued
- test? and thm

Testing vs proving

- Testing:

```
(test? (implies (natp n)
(equal (even-natp n)
(even-intp n))))
```

- We are asking the tool to generate many examples and test on each example whether property holds
- In this case, an example is one specific n
- The test passes if the tool cannot find an example violating the property: a counter-example
- More powerful than check= which tests just one example
- Theorem proving:

```
(thm (implies (natp n)
    (equal (even-natp n)
    (even-intp n))))
```

- We are asking the tool to prove that the property holds for every n
- More powerful than test? - why?
- Also theorem proving techniques fundamentally different from testing

Important: implicit for-all quantification in properties

- In the property below "for all n " is implied:

```
(implies (natp n)
    (equal (even-natp n)
    (even-intp n)))
```

- This really means "for all n in the ACL2s universe", not just "for all natural numbers n " !

Summary: thm vs test?

- test? - possible outcomes:
- Counter-example: property does not hold (is false)
- All examples pass: property might or might not hold
- Proof: sometimes test? manages to actually prove the property => property holds (is true)
- thm - possible outcomes:
- Counter-example: property does not hold (is false)
- Unknown: thm could not prove it, did not find counter-example
- Proof: property holds (is true)

Structure of properties

- Usually our properties will be of the form

```
(implies H C)
hypothesis conclusion
```

- Usually H will be of the form

```
(and (R1 x1) (R2 x2) ... (Rn xn) ...)
```

- Ri's are recognizers and xi's are variables appearing in C
- The second ... can be some extra assumptions
- We must perform contract checking on all the non-recognizers in H
- i.e., the ... after the recognizers must satisfy its contracts, assuming prior assumptions hold
- C can be any Boolean expression
- We must perform contract checking also for C
- All functions in C must satisfy their contracts, assuming H holds

Examples

```
(definec even-natp (x :nat) :bool ( x 2)))
    (natp (/ x 2)))
    (integerp (/ x 2)))
```

```
(test? (implies (natp n)
    (equal (even-natp n)
    (even-intp n))))
```

```
(test? (implies (intp n)
    (equal (even-natp n)
    (even-intp n))))
```

Contract checking fails. (even-natp n) requires n to be a nat.

Result of test?
untrustworthy!

Examples

```
(definec even-natp (x :nat) :bool (definec even-intp (x: int) :bool
    (natp (/ x 2)))
```

(test? (implies	$(<20 / 3$	$\mathrm{n})$
	(equal	$($ even-natp $n)$
		$($ even-intp $n)))$)

Contract checking fails.
(< 20/3n)
requires n to be rational.

$$
\begin{aligned}
\text { (test? (implies } & (\text { and }(\text { natp } n)(<20 / 3 \mathrm{n})) \\
& (\text { equal }(\text { (even-natp n) } \\
& (\text { even-intp n))))) }
\end{aligned}
$$

Contract checking passes. A nat is also a rational.

Examples

```
(definec even-natp (x :nat) :bool
    (natp (/ x 2)))
```

```
(definec even-intp (x: int) :bool
```

(definec even-intp (x: int) :bool
(integerp (/ x 2)))

```
    (integerp (/ x 2)))
```

Alternative definition of even-intp:
This property holds:

```
(test?
    (implies
        (natp n)
        (equal (even-natp n)
        (even-intp n))))
```

What about this one?

```
(definec even-intp2 (x :int) :bool
    (if (natp x)
        (even-natp x)
    (even-natp (* x -1))))
```

Because of the two properties to the left, these two definitions are equivalent.
How would you express this equivalence in ACL2s?

```
(test?
    (implies
        (and (intp n) (< n 0))
        (equal (even-intp n)
            (even-natp (* n -1)))))
```


Examples

```
(definec even-natp (x :nat) :bool
    (natp (/ x 2)))
```

```
(definec even-intp (x: int) :bool
```

(definec even-intp (x: int) :bool

```
(definec even-intp (x: int) :bool
    (integerp (/ x 2)))
```

 (integerp (/ x 2)))
    ```
    (integerp (/ x 2)))
```

This property holds:

```
(test?
    (implies
        (natp n)
        (equal (even-natp n)
        (even-intp n))))
```

What about this one?

```
```

(test?

```
```

(test?
(implies
(implies
(and (intp n) (< n 0))
(and (intp n) (< n 0))
(equal (even-intp n)
(equal (even-intp n)
(even-natp (* n -1)))))

```
```

 (even-natp (* n -1)))))
    ```
```

Alternative definition of even-intp:

```
(definec even-intp2 (x :int) :bool
    (if (natp x)
        (even-natp x)
        (even-natp (* x -1))))
```

Because of the two properties to the left, these two definitions are equivalent.
We can express this as an ACL2s theorem:

```
```

(thm (implies

```
```

(thm (implies
(intp x)
(intp x)
(equal (even-intp x)
(equal (even-intp x)
(even-intp2 x))))

```
```

 (even-intp2 x))))
    ```
```


Contract checking in test?/thm and in functions

```
(definec even-natp (x :nat) :bool
(definec even-intp (x: int) :bool
    (integerp (/ x 2)))
```

Contract checking this

```
(test? (implies (and (natp n) (< 20/3 n))
    (equal (even-natp n)
    (even-intp n))))
```

```
is the same as performing (defunc test1 (n)
contract checking on this function:
```

```
    :input-contract (and (natp n) (< 20/3 n))
```

 :input-contract (and (natp n) (< 20/3 n))
 :output-contract (booleanp (test1 n))
 :output-contract (booleanp (test1 n))
 (equal (even-natp n)
 (equal (even-natp n)
 (even-intp n)))
    ```
    (even-intp n)))
```

In ACL2s the specification language is embedded into the programming language!

Quiz

- Consider the following statement:
(thm (equal (first x) (car x)))
A. It is indeed a theorem
B. It is not a theorem
C. It does not even pass contract checking

Quiz

- Consider the following incomplete statement:

$$
\begin{aligned}
(\text { thm (implies } & (\text { listp } x) \\
& (\text { equal (second x) ???))) }
\end{aligned}
$$

- What can we put in the place of ??? to make the statement a true theorem?
A. ($\operatorname{car} x$)
B. (cdr x)
C. (car (cdr x))
D. (cdr (car x))
E. Nothing. No matter what we put, it will not pass contract checking.

Demo

- See file 09-property-testing.lisp

Next

- Propositional logic

