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Outline 

• Property-based testing continued
— test? and thm
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Testing vs proving
• Testing:

— We are asking the tool to generate many examples and test on 
each example whether property holds
o In this case, an example is one specific n

— The test passes if the tool cannot find an example violating the 
property: a counter-example

— More powerful than check= which tests just one example

• Theorem proving:

— We are asking the tool to prove that the property holds for every n
— More powerful than test? – why?
— Also theorem proving techniques fundamentally different from 

testing
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(thm (implies (natp n)
(equal (even-natp n)

(even-intp n))))

(test? (implies (natp n)
(equal (even-natp n)

(even-intp n))))



Important: implicit for-all quantification in 
properties

• In the property below “for all n” is implied:

• This really means “for all n in the ACL2s universe”, 
not just “for all natural numbers n” !
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(implies (natp n)
(equal (even-natp n)

(even-intp n)))



Summary: thm vs test?

• test? – possible outcomes:
— Counter-example: property does not hold (is false)
— All examples pass: property might or might not hold
— Proof: sometimes test? manages to actually prove 

the property => property holds (is true)

• thm – possible outcomes:
— Counter-example: property does not hold (is false)
— Unknown: thm could not prove it, did not find 

counter-example 
— Proof: property holds (is true)

Tripakis Logic and Computation, Fall 2019 5

test? fails

test? passes

thm passes

thm fails



Structure of properties
• Usually our properties will be of the form

• Usually H will be of the form

— Ri’s are recognizers and xi’s are variables appearing in C
— The second … can be some extra assumptions
— We must perform contract checking on all the non-recognizers in H

o i.e., the … after the recognizers must satisfy its contracts, assuming prior 
assumptions hold

• C can be any Boolean expression
— We must perform contract checking also for C
— All functions in C must satisfy their contracts, assuming H holds
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(implies H C)

hypothesis conclusion

(and (R1 x1) (R2 x2) … (Rn xn) …)



Examples
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(definec even-natp (x :nat) :bool
(natp (/ x 2)))

(test? (implies (natp n)
(equal (even-natp n)

(even-intp n))))

(definec even-intp (x: int) :bool
(integerp (/ x 2)))

Contract checking passes

(test? (implies (intp n)
(equal (even-natp n)

(even-intp n))))

Contract checking fails.
(even-natp n)

requires n to be a nat.
Result of test?
untrustworthy!



Examples
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(definec even-natp (x :nat) :bool
(natp (/ x 2)))

(test? (implies (and (natp n) (< 20/3 n))
(equal (even-natp n)

(even-intp n))))

(definec even-intp (x: int) :bool
(integerp (/ x 2)))

Contract checking passes.
A nat is also a rational.

(test? (implies (< 20/3 n)
(equal (even-natp n)

(even-intp n))))

Contract checking fails.
(< 20/3 n)

requires n to be rational.



Examples
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(definec even-natp (x :nat) :bool
(natp (/ x 2)))

(test? 
(implies 

(natp n)
(equal (even-natp n)

(even-intp n))))

(definec even-intp (x: int) :bool
(integerp (/ x 2)))

This property holds:

(test? 
(implies 

(and (intp n) (< n 0))
(equal (even-intp n)

(even-natp (* n -1)))))

What about this one?

(definec even-intp2 (x :int) :bool
(if (natp x)

(even-natp x)
(even-natp (* x -1))))

Alternative definition of even-intp:

Because of the two properties to the left,
these two definitions are equivalent.

How would you express this equivalence in ACL2s?



Examples
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(definec even-natp (x :nat) :bool
(natp (/ x 2)))

(test? 
(implies 

(natp n)
(equal (even-natp n)

(even-intp n))))

(definec even-intp (x: int) :bool
(integerp (/ x 2)))

This property holds:

(test? 
(implies 

(and (intp n) (< n 0))
(equal (even-intp n)

(even-natp (* n -1)))))

What about this one?

(definec even-intp2 (x :int) :bool
(if (natp x)

(even-natp x)
(even-natp (* x -1))))

Alternative definition of even-intp:

Because of the two properties to the left,
these two definitions are equivalent.

We can express this as an ACL2s theorem:

(thm (implies
(intp x)
(equal (even-intp x)

(even-intp2 x))))



Contract checking in test?/thm and in functions
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(definec even-natp (x :nat) :bool
(natp (/ x 2)))

(test? (implies (and (natp n) (< 20/3 n))
(equal (even-natp n)

(even-intp n))))

(definec even-intp (x: int) :bool
(integerp (/ x 2)))

Contract checking this

(defunc test1 (n)
:input-contract (and (natp n) (< 20/3 n))
:output-contract (booleanp (test1 n))
(equal (even-natp n)

(even-intp n)))

is the same as performing 
contract checking on this 

function:

In ACL2s the specification language is embedded into the programming language!



Quiz 

• Consider the following statement:

A. It is indeed a theorem
B. It is not a theorem
C. It does not even pass contract checking
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(thm (equal (first x) (car x)))



Quiz 

• Consider the following incomplete statement:

• What can we put in the place of ??? to make the 
statement a true theorem?
A. (car x) 
B. (cdr x) 
C. (car (cdr x))
D. (cdr (car x))
E. Nothing. No matter what we put, it will not pass 

contract checking.
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(thm (implies (listp x)
(equal (second x) ???)))



Demo 

• See file 09-property-testing.lisp
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Next

• Propositional logic
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