Logic and Computation — CS 2800
Fall 2019

Lecture 4
The ACL2s universe
Expressions, syntax and semantics

Stavros Tripakis

Northeastern University
Khoury College of
Computer Sciences

Tripakis

Outline

e The ACL2s universe: atoms and conses

* Basic data types: Booleans, integers, rationals, ...
* Expressions and values
* Syntax and semantics

e Quiz: today we’ll start taking graded quizzes
using poll everywhere

Logic and Computation, Fall 2019

The ACL2s universe

The ACL2s universe

* ACL2s programs manipulate objects from the
“ACL2s universe”

e What’s in that universe?

The ACL2s universe

All = Atoms U Conses

Conses (len (list 1 2))
(ift0 1) (1.2)
(12 3) (ift O (fxyz)) (if 1)
(1-7/2 a)

Symbols

X, Y, a, b, me, you, ...

Atoms

Rationals

2/3,7/19,
-7/2, ...

Booleans
t, nil

Strings
“hello”,
“bye”, ...

Integers

Naturals
0,1,2,..

Tripakis Logic and Computation, Fall 2019 5

Quiz http://PollEv.com/stavrostrypa519

* nil is a:
— A. atom
— B. cons

— C. A & B (i.e., both an atom and a cons)

Always pick the best answer.
For example, if A and B all both true, then pick answer C.

Logic and Computation, Fall 2019

Quiz http://PollEv.com/stavrostrypa519

* tisa:
— A. symbol
— B. atom
— C. Boolean
—D.A&B
—E.B&C
—FA&B&C

Expressions and evaluation
(syntax and semantics)

Expressions

Expressions are objects in the ACL2s universe that
can be evaluated.

The result is a value (an object in the universe).

Some objects are not valid expressions, e.g., (1f nil 0) is not (why?).
If you are unsure whether something can be evaluated or not, try it in ACL2s!

Conses (len (list 1 2))
129 103 1)
. [
(1-7/2a) .(.|.ft0 (Fxyz)

Atoms Symbols

X, Y, a, b, me, you, ...

Rationals

2/3,7/19, Integers
-7/2, ...

Strings Booleans

“hello”,
“bye”, ...

Naturals
0,1,2,..

Tripakis Logic and Computation, Fall 2019 9

Evaluation rules (semantics)

* eval(expr) denotes the semantics of an expression expr
— i.e., what expr evaluates to at the REPL
— Sometimes also denoted [[expr]

e Constants evaluate to themselves:

— eval(t) =t
— eval(nil) = nil
— eval(0) =0

— eval(7/2) =7/2
— eval(—=2) = -2

Semantics of 1 £

e i f is a function with the following signature:
— if : All x All x All -> All

e Evaluation rules (semantics) of 1 f:

[expr;] when [test] # nil

— [(if test expry expry)] = {[[exprz]] when [test] = nil

* E.g.:
— [(iftnilt)] =
— [(f (iftnilt) 1 2)] =

Semantics of 1 £

e i f is a function with the following signature:
— if : All x All x All -> All

e Evaluation rules (semantics) of 1 f:

[expr;] when [test] # nil

— [(if test expry expry)] = {[[exprz]] when [test] = nil

*E.g.:
— [(if tnil t)]] = nil
— [(Gf Gftnilt) 1 2)] = [(ifnil 1 2)] = 2

Tripakis

Semantics of 1 £

e i f is a function with the following signature:
— if : All x All x All -> All

e Evaluation rules (semantics) of 1 f:

[expr;] when [test] # nil

— [(if test expry expry)] = {[[exprz]] when [test] = nil

* Note that we can only evaluate valid expressions! Otherwise,
semantics is undefined. E.g., the arity of if must be satisfied:

— [(ftniD)] =72
— [(f123)] =2

Logic and Computation, Fall 2019

13

Tripakis

Semantics of 1 £

e i f is a function with the following signature:
— if : All x All x All -> All

e Evaluation rules (semantics) of 1 f:

[expr;] when [test] # nil

— [(if test expry expry)] = {[[exprz]] when [test] = nil

* Note that we can only evaluate valid expressions! Otherwise,
semantics is undefined. E.g., the arity of if must be satisfied:

— [(if t nil)] = undefined!
— [(f123)] =2 because [1] = 1 # nil

Logic and Computation, Fall 2019

14

Lazy vs strict evaluation

* Evaluation rules (semantics) of if:

— [(if test expry expry)] = {

[expr;] when [test] # nil
[expr,] when [test] = nil

* ACL2s if is lazy. This means that expressions are evaluated
only when necessary:

— [[test] is always evaluated

— [expry]

someth

— [expr;]

is only evaluated if
ing other than nil.

is only evaluated if

[test]

* All other ACL2s functions are strict:
— First all arguments to the function are evaluated
— Then function is applied to the argument values

turns out to be

[test] turns out to be nil.

Syntax vs semantics: recap

* In general:
— Syntax: some text or graphics
— Semantics: what this text/graphics means

* |n our case:
— Syntax: an object in the ACL2s universe

— Semantics: what value the object evaluates to, provided that
the object is a (valid) expression!

* Notes:
— Some objects are not expressions, therefore do not evaluate
to anything!
— The values are themselves objects, which might be evaluated
again, provided they are (valid) expressions!

Quiz http://PollEv.com/stavrostrypa519

* How many times can -13/3 be evaluated?
A. Zero times (not a valid expression)
B. 1time

C. 2times

D. Any number of times

Semantics of equal

e equal is a function with the following signature:
— equal : All x All -> Boolean

 Evaluation rules (semantics) of equal:

nil when [[expr;] # [expr;,]

— [[(equal expry exPTZ)]] = {t when [[exprl]] — [[exprZ]]

*E.g.:
— [(equal 3 nil)] =
— [(equal (if (if tnil t) 1 2) 2)] =

Semantics of equal

e equal is a function with the following signature:
— equal : All x All -> Boolean

 Evaluation rules (semantics) of equal:

nil when [[expr;] # [expr;,]

— [[(equal expry exPTZ)]] = {t when [[exprl]] — [[exprZ]]

*E.g.:
— [(equal 3 nil)] = nil
— [(equal (if (if tnil t) 12) 2)] =t

booleanp

* booleanp is arecognizer: it takes anything as input

and returns a Boolean (the “p” is for “predicate”)
— booleanp : All -> Boolean

(definec booleanp (x :all) :boolean
(1f (equal x t)
t

(equal x nil)))

Logic and Computation, Fall 2019

Tripakis

booleanp

* Let’s evaluate this expression:

[(booleanp 3)] =

(definec booleanp (x :all)
(1f (equal x t)
T
(equal x nil)))

:boolean

Logic and Computation, Fall 2019

21

booleanp

* Let’s evaluate this expression:

[(booleanp 3)]
= { definition of booleanp }
[(if (equal3t) t (equal3nil))]
= { lazy if, semantics of equal }
[(if nil t (equal 3 nil))]
= { semantics of if }

[(equal 3 nil)]
= { semantics of equal }
nil
(definec booleanp (x :all) :boolean
(1f (equal x t)
T

(equal x nil)))

and, version 1

* How would you define logical and (conjunction)?

(definec and (a
(1f a b nil))

:bool Db :bool)

:bool

Not the way and is
really defined!
We’ll see why later.

Tripakis

Logic and Computation, Fall 2019

23

Numbers

Numbers and number recognizers

e Built-in functions:
— 1ntegerp : All -> Boolean

— rationalp : All -> Boolean

* Semantics:
— [(integerp x)] is tiff [x] is an integer
— [(rationalp x)] is t iff [x] is a rational

— In ACL2s we get “real” (mathematical) numbers, not
approximations like in C, Java, ...

— All integers are rationals
— 4/2 is the same numberas 2,and 3/6=2/4=1/2 = ...

o Different syntax, same semantics!
o Can the same syntax result in different semantics?

Logic and Computation, Fall 2019

Tripakis

Rationals

[4/2] = 2

[2/4] = 1/2
[—132/765] = —44/255
etc

Built-in functions:
— numerator: Rational -> Integer

— denominator: Rational -> Pos

N\

Integers >0

Logic and Computation, Fall 2019

26

More numeric functions

e Built-in functions:

— 4+, *, / : Rational x Rational -> Rational
— < : Rational x Rational -> Boolean
— unary-- : Rational -> Rational

— unary-/ : Rational \ {0} -> Rational

Tripakis Logic and Computation, Fall 2019

27

POSP

* Let’s try to define the recognizer posp of positive
Integers:
— posp : All -> Boolean

(definec posp (x :all) :bool
(and (integerp x) (< 0 x)))

Do you see anything wrong with the above definition?
Assume the function and is defined as previously:

(definec and (a :bool Db :bool) :bool
(1f a b nil))

Tripakis Logic and Computation, Fall 2019

28

POSP

* Let’s try to define the recognizer posp of positive
Integers:
— posp : All -> Boolean

(definec posp (x :all) :bool
(and (integerp x) (< 0 x)))

Contract violation! E.g., when x is a list.
This is because and is defined as a function => it is strict.
How can we fix this?

(definec and (a :bool Db :bool) :bool
(1f a b nil))

Tripakis Logic and Computation, Fall 2019

29

POSP

* Let’s try to define the recognizer posp of positive
Integers:
— posp : All -> Boolean

(definec posp (x :all) :bool
(1f (integerp x) (< 0 x) nil))

One possible fix is to not use and at all.

Logic and Computation, Fall 2019

Tripakis

POSP

* Let’s try to define the recognizer posp of positive
Integers:
— posp : All -> Boolean

(definec posp (x :all) :bool
(and (integerp x) (< 0 x)))

But maybe another solution is to make and lazy?
But how? (defined functions are all strict)
=> MACROS!

Logic and Computation, Fall 2019

31

Tripakis

and, version 2 (macro)

(and) -> t

(and x) -> X

(and x V) -> (1f x y nil)

(and x y z) -> (1if x (if y z nil) nil)

Macros are first expanded (rewritten) into their definitions.

Then evaluation happens as usual.

Logic and Computation, Fall 2019

32

Tripakis

Both and and or are macros

(and) -> t

(and Xx) -> X

(and x vVv) -> (1f y nil)

(and x y z) —-> (1f (1f v z nil) nil)
(or) -> nil

(or X) -> X

(or x V) -> (1f X V)

(or x y z) -> (1f X (1f vy z))

Do and and or expect Booleans?
Do they always return Booleans?

Logic and Computation, Fall 2019

33

Boolean functions

(note: they return bool, but they accept all)

(definec implies (a :all b
(1f a (1f b t nil) t))

:all) :bool

(1f a nil t))

(definec not (a :all) :bool

(1f a
(1f b t nil)
(1f b nil t)))

(definec iff (a :all b :all) :bool

(1f a
(1f b nil t)
(1f b t nil)))

(definec xor (a :all b :all) :bool

Tripakis Logic and Computation, Fall 2019

34

Next time

e Introduction to ACL2s continued

e Conses, lists, true lists

