Logic and Computation — CS 2800
Fall 2019

Lecture 3
Designing programs continued
Introduction to ACL2s continued
Invariants & Contracts

Stavros Tripakis

Northeastern University
Khoury College of
Computer Sciences




Outline

* Desighing programs continued

* Introduction to ACL2s continued
* Invariants and contracts

* ACL2s demo



Invariants and contracts



Invariants

* Consider this toy program:

k := 0 ; // assign 0 to k
what condition is true about k here?

// say “I love you” ten times:

while (k < 10) {
what about here?

printf ("I love you\n”) ;

k++ ;
and here?

Tripakis Logic and Computation, Fall 2019



Invariants

 What is an invariant?
— A property that is always satisfied in all executions of

*E.g.:

Tripakis

the program, at a certain location in the program.

= 0 ; // assign 0 to k

/ k=0 1s an invariant here

// say “I love you” ten times:

while (k < 10) {

// k<10 1is an invariant here

// 0<=k<10 is another (stronger) invariant
printf ("I love you\n”) ;

k++ ;

// k<=10 is invariant here

assert (k<=10); // assertion statement

Logic and Computation, Fall 2019




Invariants

e What about our ACL2s code? (if (endp 1)

* Same concept:

0
(+ 1 (len

(definec len (1 :tl) :nat

(rest 1)))))

— The property (t1lp 1) (lisatrue list)is an invariant at

the location below:

(definec len

0
(+ 1 (len

(L :tl) :nat

(1f (endp {(tlp 1)} 1)

(rest 1)))))

— Why?

— Because of the input contract (1 :t1l)




Contracts

* A simple and useful class of invariants about inputs
and outputs
— NEW! in ACL2s / this course
— In Fundies 1 these were specified as comments

— Here: integrated as part of the language => can be
checked statically by the compiler!

* Every function has:

| (definec len (1 :tl) :nat
— Input contract (if (endp 1)

— QOutput contract 0

— Function contract (+ 1 (len (rest 1)))))

— Body contract(s)



Function contract & body contracts

* Function contract: (tlp 1) => (natp (len 1))

(definec len (1 :tl) :nat
(1£{5} (endp{1l} 1)
0
(+{4} 1 (len{3} (rest{2} 1)))))

* Body contracts of len:

— Whenever we call a function f we must establish that

the input contract of f is satisfied
— endp{l}: (listp 1)

— rest{2}: (consp 1)
— len{3}: (tlp 1)
— +{4}: (rationalp 1) and (rationalp (len (rest 1)))

— 1f{5}: t

Logic and Computation, Fall 2019



Good programming practice

— Every time you write a program (not just for this class)
check body and function contracts (and other
invariants)

— Elite programmers think in terms of contracts /
Invariants

Logic and Computation, Fall 2019



defunc

A more verbose, but also more powerful, way to

write contracts

(definec len
(1f (endp 1)

0
(+ 1 (len

(1 :tl) :nat

(rest 1)))))

(1f (endp 1)
0

Tripakis

(+ 1 (len

(defunc len (1)
:input-contract (tlp 1)
:output-contract (natp (len 1))

(rest 1)))))

Logic and Computation, Fall 2019

10




Tripakis

defunc

* A more verbose, but also more powerful, way to

write contracts

(defunc invert (x)
:ilnput-contract
:output—-contract

(/ 1 x))

(and (rationalp x) (not
(rationalp (invert x))

(equal x 0)))

Logic and Computation, Fall 2019

11



Tripakis

defunc

 Generates more contracts to check!

(defunc len

:input-contract (tlp{6} 1)
:output-contract (natp{8} (len{7} 1))
(1£{5} (endp{1l} 1)

(1)

0
(+{4} 1 (len{3} (rest{2} 1)))))

— tlp{6}: t (tlp is a recognizer)

— len{7}: (tlp 1) (holds thanks to the input contract!)

— natp{8}: t

(natp is also a recognizer)

Logic and Computation, Fall 2019

12



Static contract checking

e For function definition to be accepted, all contracts must be
proved statically (at “compile-time”)

(defunc len (1)
:input-contract (tlp{6} 1)
:output-contract (natp{8} (len{7} 1))
(1£{3} (endp{1} 1)
0
(+{4} 1 (len{3} (rest{2} 1)))))

— Then, during execution, only top-level input contracts need to be
checked

— Static checking guarantees fewer runtime errors

— Also we don’t have to check contracts during runtime => more
efficient execution

— But automatic proofs are hard => most PLs don’t support static
contract proofs

Tripakis Logic and Computation, Fall 2019 13



Dynamic contract checking

* Generate code to check contracts dynamically (at “runtime”)

(defunc len (1)
:input-contract (tlp{6} 1)
:output-contract (natp{8} (len{7} 1))
(1£{3} (endp{1} 1)
0
(+{4} 1 (len{3} (rest{2} 1)))))

— E.g., we might generate assert statements
— Contract violations => runtime exceptions
— Performance penalty

— Typically used in development

Tripakis Logic and Computation, Fall 2019



Designing programs and intro to
ACL2s continued



Contracts is just one example of

ACL2s functionality

(definec len
(1f
-1

(+ 1 (len

(check=
(check=

(len
(len

(endp 1)

(1 :tl) :nat (define (len 1)
(1f (empty? 1)
-1
(rest 1))))) (+ 1 (len (rest 1)))))
(list 1 2)) 2) (check-expect (len (list 1 2))
(list)) 0) (check-expect (len (list)) O0)

2)

ACL2s will not accept the above definition, but Racket will.

Contracts allow ACL2s to check function signatures.

Tripakis

Logic and Computation, Fall 2019

16




Another example of ACL2s
functionality: checking termination

(definec len (1 :tl) :nat
* |s len well-defined? (if (endp 1)
0
(+ 1 (len (rest 1)))))
 What if we wrote this instead: (definec len (1 :tl) :nat
— Note: (rest nil) = nil (1f (endp 1)
(+ 1 (len (rest 1)))
0))
* Or this: (definec len (1 :tl) :nat
(1f (endp 1)
0
e ACL2s will not accept a function (+ 1 (len 1))))
definition unless it can prove
termination.

* We will cover termination later.

Logic and Computation, Fall 2019



Tripakis

Designing programs: append

app: TL x TL -> TL 1. Identify data definitions
append (concatenate) two lists 2. Write a description

recursive definition (like len)
3. Test cases: how many?
which ones?
let’s review what a TL (true list) 1is:
TL ::= nil | (cons All TL)
TL 1s elither nil or the cons of
something/anything and another TL
Therefore we need at least 2*2=4 tests:

Logic and Computation, Fall 2019

18



Designing programs: append

;7 app: TL x TL —-> TL 1. Identify data definitions
;; append (concatenate) two lists 2. Write a description

;; recursive definition (like len)

3. Test cases: how many?
which ones?

;; let’s review what a TL (true list) 1is:

;; TL ::= nil | (cons All TL) Notes:
;; TL is either nil or the cons of nil = ()
;; something/anything and another TL (list 1 2) = Y(1 2)

;7 Therefore we need at least 2*2=4 tests:

(check= (app nil nil) nil)

(check= (app () (list 1 2)) (list 1 2))

(check= (app (list 1 2) ()) (list 1 2))

(check= (app (list 3 4) (list 1 2)) (list 3 4 1 2))

Tripakis Logic and Computation, Fall 2019 19



Designing programs: append

;; app: TL x TL -> TL
;; append (concatenate) two lists
;; recursive definition (like len)

Tripakis Logic and Computation, Fall 2019

4. Contracts

(check= (app nil nil) nil)

(check= (app () (list 1 2)) (list 1 2))

(check= (app (list 1 2) ()) (list 1 2))

(check= (app (list 3 4) (list 1 2)) (list 3 4 1 2))

20



°
14
°
14

°
14

o
14
o
14

o
14

Designing programs: append

app: TL x TL -> TL
append (concatenate) two lists
recursive definition (like len)

(definec app (x :tl y :tl) :tl

(
(
(
(

Tripakis

4. Contracts

How to complete
the definition?

check= (app nil nil) nil)

check= (app () (list 1 2)) (list 1 2))

check= (app (list 1 2) ()) (list 1 2))

check= (app (list 3 4) (list 1 2)) (list 3 4 1 2))

Logic and Computation, Fall 2019

21



Designing programs: append

;; app: TL x TL -> TL
;; append (concatenate) two lists
;; recursive definition (like len)

(definec app (x :tl y :tl) :tl 5. Data-driven definition

template

(check= (app nil nil) nil)

(check= (app () (list 1 2)) (list 1 2))

(check= (app (list 1 2) ()) (list 1 2))

(check= (app (list 3 4) (list 1 2)) (list 3 4 1 2))

Tripakis Logic and Computation, Fall 2019 22



Designing programs: append

;; app: TL x TL -> TL
;; append (concatenate) two lists
;; recursive definition (like len)

(definec app (x :tl y :tl) :tl
(1f (endp x)

5. Data-driven definition

template
(... (rest x) ... ))))
(check= (app nil nil) nil)
(check= (app () (list 1 2)) (list 1 2))
(check= (app (list 1 2) ()) (list 1 2))
(check= (app (list 3 4) (list 1 2)) (list 3 4 1 2))

Tripakis Logic and Computation, Fall 2019 23



Designing programs: append

;; app: TL x TL -> TL
;; append (concatenate) two lists
;; recursive definition (like len)

(definec app (x :tl y :tl) :tl 6. Complete definition

(1f (endp x)
Y
(cons (first x) (app (rest x) vy))))
(check= (app nil nil) nil)
(check= (app () (list 1 2)) (list 1 2))
(check= (app (list 1 2) ()) (list 1 2))
(check= (app (list 3 4) (list 1 2)) (list 3 4 1 2))

Tripakis Logic and Computation, Fall 2019

24



(definec app (x :tl y :tl) :tl

Discussion | Wf tende x)

Y
(cons (first x) (app (rest x) vy))))

* Append takes two arguments: x and y
 Why did we choose to recur on x? why not y?

* Tips:
— Develop your own shorthand notations
— E.g.: TL : nil | (cons All TL)
Base case: app nil Y =Y
Recursive case: app az Y = azy¥Y

— Try quickly (using paper and pencil!) different options,
see which one works



Tripakis

(definec app (x :tl y

Discussion | Wf tende x)

%
(cons (first x)

:tl)

(app

:tl

(rest x)

¥y))))

* Example: quickly try to recur on x

Logic and Computation, Fall 2019

26




Discussion | Wf tende x)

Y

(definec app (x :tl y :tl) :tl

(cons (first x) (app (rest x) vy))))

* Example: quickly try to recur on x

TL : nil | (cons All TL)
Base case: app nil Y =Y
Recursive case: app az Y = azy¥

app (cons a 2) Y = azy

(cons a ZY)
(cons a (app Z Y))

Tripakis Logic and Computation, Fall 2019

27




Tripakis

(definec app (x :tl y

Discussion | Wf tende x)

%
(cons (first x)

:tl)

(app

:tl

(rest x)

¥y))))

* Example: quickly try to recur ony

Logic and Computation, Fall 2019

28




Maybe 1f I had something that yields

This didn’t work.

Xa ?

app X az = (Xa) 7 =

XazZ = app (Xa) Z

(definec app (x :tl y :tl) :tl
" " L f d
Discussion | fenee =
(cons (first x) (app (rest x) vy))))
* Example: quickly try to recur ony
TL nil | (cons All TL)
Base case: app X nil = X
Recursive case: app X az = Xaz
app X (cons a 2) = Xaz
= X (cons a 2)
= app X (cons a 24) P

Tripakis

Logic and Computation, Fall 2019

29




(definec app (x :tl y :tl) :tl

Discussion | Wf tende x)

Y
(cons (first x) (app (rest x) vy))))

e Can we recur on both x and y?
— Do you need to?
— KISS: keep it simple and short

* And always check your contracts!
— Body contracts, function contract, etc



Next time

* Basic data types
* Expressions and values

* Syntax and semantics



