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Invariants and contracts



Invariants

* Consider this toy program:

k := 0 ; // assign 0 to k
what condition is true about k here?

// say “I love you” ten times:

while (k < 10) {
what about here?

printf ("I love you\n”) ;

k++ ;
and here?
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Invariants

 What is an invariant?
— A property that is always satisfied in all executions of

*E.g.:

Tripakis

the program, at a certain location in the program.

= 0 ; // assign 0 to k

/ k=0 1s an invariant here

// say “I love you” ten times:

while (k < 10) {

// k<10 1is an invariant here

// 0<=k<10 is another (stronger) invariant
printf ("I love you\n”) ;

k++ ;

// k<=10 is invariant here

assert (k<=10); // assertion statement
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Invariants

e What about our ACL2s code? (if (endp 1)

* Same concept:

0
(+ 1 (len

(definec len (1 :tl) :nat

(rest 1)))))

— The property (t1lp 1) (lisatrue list)is an invariant at

the location below:

(definec len

0
(+ 1 (len

(L :tl) :nat

(1f (endp {(tlp 1)} 1)

(rest 1)))))

— Why?

— Because of the input contract (1 :t1l)




Contracts

* A simple and useful class of invariants about inputs
and outputs
— NEW! in ACL2s / this course
— In Fundies 1 these were specified as comments

— Here: integrated as part of the language => can be
checked statically by the compiler!

* Every function has:

| (definec len (1 :tl) :nat
— Input contract (if (endp 1)

— QOutput contract 0

— Function contract (+ 1 (len (rest 1)))))

— Body contract(s)



Function contract & body contracts

* Function contract: (tlp 1) => (natp (len 1))

(definec len (1 :tl) :nat
(1£{5} (endp{1l} 1)
0
(+{4} 1 (len{3} (rest{2} 1)))))

* Body contracts of len:

— Whenever we call a function f we must establish that

the input contract of f is satisfied
— endp{l}: (listp 1)

— rest{2}: (consp 1)
— len{3}: (tlp 1)
— +{4}: (rationalp 1) and (rationalp (len (rest 1)))

— 1f{5}: t

Logic and Computation, Fall 2019



Good programming practice

— Every time you write a program (not just for this class)
check body and function contracts (and other
invariants)

— Elite programmers think in terms of contracts /
Invariants
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defunc

A more verbose, but also more powerful, way to

write contracts

(definec len
(1f (endp 1)

0
(+ 1 (len

(1 :tl) :nat

(rest 1)))))

(1f (endp 1)
0

Tripakis

(+ 1 (len

(defunc len (1)
:input-contract (tlp 1)
:output-contract (natp (len 1))

(rest 1)))))
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defunc

* A more verbose, but also more powerful, way to

write contracts

(defunc invert (x)
:ilnput-contract
:output—-contract

(/ 1 x))

(and (rationalp x) (not
(rationalp (invert x))

(equal x 0)))
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defunc

 Generates more contracts to check!

(defunc len

:input-contract (tlp{6} 1)
:output-contract (natp{8} (len{7} 1))
(1£{5} (endp{1l} 1)

(1)

0
(+{4} 1 (len{3} (rest{2} 1)))))

— tlp{6}: t (tlp is a recognizer)

— len{7}: (tlp 1) (holds thanks to the input contract!)

— natp{8}: t

(natp is also a recognizer)
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Static contract checking

e For function definition to be accepted, all contracts must be
proved statically (at “compile-time”)

(defunc len (1)
:input-contract (tlp{6} 1)
:output-contract (natp{8} (len{7} 1))
(1£{3} (endp{1} 1)
0
(+{4} 1 (len{3} (rest{2} 1)))))

— Then, during execution, only top-level input contracts need to be
checked

— Static checking guarantees fewer runtime errors

— Also we don’t have to check contracts during runtime => more
efficient execution

— But automatic proofs are hard => most PLs don’t support static
contract proofs
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Dynamic contract checking

* Generate code to check contracts dynamically (at “runtime”)

(defunc len (1)
:input-contract (tlp{6} 1)
:output-contract (natp{8} (len{7} 1))
(1£{3} (endp{1} 1)
0
(+{4} 1 (len{3} (rest{2} 1)))))

— E.g., we might generate assert statements
— Contract violations => runtime exceptions
— Performance penalty

— Typically used in development
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Designing programs and intro to
ACL2s continued



Contracts is just one example of

ACL2s functionality

(definec len
(1f
-1

(+ 1 (len

(check=
(check=

(len
(len

(endp 1)

(1 :tl) :nat (define (len 1)
(1f (empty? 1)
-1
(rest 1))))) (+ 1 (len (rest 1)))))
(list 1 2)) 2) (check-expect (len (list 1 2))
(list)) 0) (check-expect (len (list)) O0)

2)

ACL2s will not accept the above definition, but Racket will.

Contracts allow ACL2s to check function signatures.

Tripakis
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Another example of ACL2s
functionality: checking termination

(definec len (1 :tl) :nat
* |s len well-defined? (if (endp 1)
0
(+ 1 (len (rest 1)))))
 What if we wrote this instead: (definec len (1 :tl) :nat
— Note: (rest nil) = nil (1f (endp 1)
(+ 1 (len (rest 1)))
0))
* Or this: (definec len (1 :tl) :nat
(1f (endp 1)
0
e ACL2s will not accept a function (+ 1 (len 1))))
definition unless it can prove
termination.

* We will cover termination later.
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Designing programs: append

app: TL x TL -> TL 1. Identify data definitions
append (concatenate) two lists 2. Write a description

recursive definition (like len)
3. Test cases: how many?
which ones?
let’s review what a TL (true list) 1is:
TL ::= nil | (cons All TL)
TL 1s elither nil or the cons of
something/anything and another TL
Therefore we need at least 2*2=4 tests:
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Designing programs: append

;7 app: TL x TL —-> TL 1. Identify data definitions
;; append (concatenate) two lists 2. Write a description

;; recursive definition (like len)

3. Test cases: how many?
which ones?

;; let’s review what a TL (true list) 1is:

;; TL ::= nil | (cons All TL) Notes:
;; TL is either nil or the cons of nil = ()
;; something/anything and another TL (list 1 2) = Y(1 2)

;7 Therefore we need at least 2*2=4 tests:

(check= (app nil nil) nil)

(check= (app () (list 1 2)) (list 1 2))

(check= (app (list 1 2) ()) (list 1 2))

(check= (app (list 3 4) (list 1 2)) (list 3 4 1 2))
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Designing programs: append

;; app: TL x TL -> TL
;; append (concatenate) two lists
;; recursive definition (like len)
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4. Contracts

(check= (app nil nil) nil)

(check= (app () (list 1 2)) (list 1 2))

(check= (app (list 1 2) ()) (list 1 2))

(check= (app (list 3 4) (list 1 2)) (list 3 4 1 2))
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Designing programs: append

app: TL x TL -> TL
append (concatenate) two lists
recursive definition (like len)

(definec app (x :tl y :tl) :tl

(
(
(
(

Tripakis

4. Contracts

How to complete
the definition?

check= (app nil nil) nil)

check= (app () (list 1 2)) (list 1 2))

check= (app (list 1 2) ()) (list 1 2))

check= (app (list 3 4) (list 1 2)) (list 3 4 1 2))
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Designing programs: append

;; app: TL x TL -> TL
;; append (concatenate) two lists
;; recursive definition (like len)

(definec app (x :tl y :tl) :tl 5. Data-driven definition

template

(check= (app nil nil) nil)

(check= (app () (list 1 2)) (list 1 2))

(check= (app (list 1 2) ()) (list 1 2))

(check= (app (list 3 4) (list 1 2)) (list 3 4 1 2))
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Designing programs: append

;; app: TL x TL -> TL
;; append (concatenate) two lists
;; recursive definition (like len)

(definec app (x :tl y :tl) :tl
(1f (endp x)

5. Data-driven definition

template
(... (rest x) ... ))))
(check= (app nil nil) nil)
(check= (app () (list 1 2)) (list 1 2))
(check= (app (list 1 2) ()) (list 1 2))
(check= (app (list 3 4) (list 1 2)) (list 3 4 1 2))
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Designing programs: append

;; app: TL x TL -> TL
;; append (concatenate) two lists
;; recursive definition (like len)

(definec app (x :tl y :tl) :tl 6. Complete definition

(1f (endp x)
Y
(cons (first x) (app (rest x) vy))))
(check= (app nil nil) nil)
(check= (app () (list 1 2)) (list 1 2))
(check= (app (list 1 2) ()) (list 1 2))
(check= (app (list 3 4) (list 1 2)) (list 3 4 1 2))
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(definec app (x :tl y :tl) :tl

Discussion | Wf tende x)

Y
(cons (first x) (app (rest x) vy))))

* Append takes two arguments: x and y
 Why did we choose to recur on x? why not y?

* Tips:
— Develop your own shorthand notations
— E.g.: TL : nil | (cons All TL)
Base case: app nil Y =Y
Recursive case: app az Y = azy¥Y

— Try quickly (using paper and pencil!) different options,
see which one works
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(definec app (x :tl y

Discussion | Wf tende x)

%
(cons (first x)

:tl)

(app

:tl

(rest x)

¥y))))

* Example: quickly try to recur on x
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Discussion | Wf tende x)

Y

(definec app (x :tl y :tl) :tl

(cons (first x) (app (rest x) vy))))

* Example: quickly try to recur on x

TL : nil | (cons All TL)
Base case: app nil Y =Y
Recursive case: app az Y = azy¥

app (cons a 2) Y = azy

(cons a ZY)
(cons a (app Z Y))
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(definec app (x :tl y

Discussion | Wf tende x)

%
(cons (first x)

:tl)

(app

:tl

(rest x)

¥y))))

* Example: quickly try to recur ony
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Maybe 1f I had something that yields

This didn’t work.

Xa ?

app X az = (Xa) 7 =

XazZ = app (Xa) Z

(definec app (x :tl y :tl) :tl
" " L f d
Discussion | fenee =
(cons (first x) (app (rest x) vy))))
* Example: quickly try to recur ony
TL nil | (cons All TL)
Base case: app X nil = X
Recursive case: app X az = Xaz
app X (cons a 2) = Xaz
= X (cons a 2)
= app X (cons a 24) P

Tripakis
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(definec app (x :tl y :tl) :tl

Discussion | Wf tende x)

Y
(cons (first x) (app (rest x) vy))))

e Can we recur on both x and y?
— Do you need to?
— KISS: keep it simple and short

* And always check your contracts!
— Body contracts, function contract, etc



Next time

* Basic data types
* Expressions and values

* Syntax and semantics



