
CS 2800 Logic and Computation

Lecture Notes, Fall 2023

Stavros Tripakis

January 16, 2024

1 Software

Our modern societies heavily depend on software, and this dependence is likely to grow. Software is impor-
tant, and it is also beautifully complex. It is complex first because of its sheer size: estimates in 2015 placed
Google’s software at about 2 billion lines of code, and Microsoft’s Windows operating system at about 50
million lines of code1; in 2017 a pacemaker had about 100 thousand lines of code, the Boeing 787 airplane
had more than 10 million, and a high-end car had about 100 million2; some estimates place the size of new
software produced every year to the hundreds of billions of lines of code3.

But even very small programs can be extremely complex. The famous Collatz conjecture states that the
following program terminates for all possible inputs:

n := input a natural number;

while (n > 1)

if (n is even)

n := n/2;

else

n := 3*n + 1;

The Collatz conjecture is an open problem.4 It is a conjecture (i.e., something we believe is true), but not
a theorem (i.e., not something we have proven). The fact that this 6-line program defies the understanding
of even our best mathematicians tells us that there is something inherently complex and challenging about
software. Software is the most complex artifact that humans have ever constructed. Understanding software
is an important intellectual challenge for humanity.

2 Software science

Science is knowledge that helps us make predictions. The keyword is predictions. The stronger the science,
the stronger the predictions it can make. Software science helps us make predictions about the programs
that we write. Will my program terminate? Is my program correct? What does correct even mean? Will
my program produce a correct output? When exactly is an output correct? Should the input satisfy any
conditions in order for the output to be correct? Is my program secure? Is my program fair, or is it biased?
Etc.

1According to https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/.
2According to https://www.visualcapitalist.com/millions-lines-of-code/.
3According to https://cybersecurityventures.com/application-security-report-2017/.
4If you solve it, you will become famous. See also: https://www.quantamagazine.org/

can-computers-solve-the-collatz-conjecture-20200826/ (thanks to Samuel Lowe for suggesting this article).

1

https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/
https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/
https://www.visualcapitalist.com/millions-lines-of-code/
https://www.visualcapitalist.com/millions-lines-of-code/
https://cybersecurityventures.com/application-security-report-2017/
https://cybersecurityventures.com/application-security-report-2017/
https://www.quantamagazine.org/can-computers-solve-the-collatz-conjecture-20200826/
https://www.quantamagazine.org/can-computers-solve-the-collatz-conjecture-20200826/
https://www.quantamagazine.org/can-computers-solve-the-collatz-conjecture-20200826/
https://www.quantamagazine.org/can-computers-solve-the-collatz-conjecture-20200826/

3 This course

Program correctness by testing and proving: This course is an introduction to the science of software.
You have already written programs. You have taken and will take more courses that teach you how to
program. In this course you will learn to reason about programs. In particular, you will learn to reason about
program correctness.

In most programming courses you will focus on checking program correctness by testing. Testing is very
important, but as Dijkstra5 famously said: “Program testing can be used to show the presence of bugs, but
never to show their absence!”

In this course we focus on proving program correctness. Proving is a stronger guarantee than testing.
Testing checks only some inputs, whereas a proof is usually about all possible inputs. So proofs offer stronger
predictions about our programs.

Logic: But in order to prove that a program is correct, we must first define what exactly we mean by
correct. For that, we will use logic. Logic is first of all a language. Contrary to natural languages (English,
Greek, etc.), logic is precise and unambiguous. We can debate endlessly about politics and the meaning of
life, but the meaning of a logical formula is not a matter of opinion. It is mathematically defined. This is
very important because it helps avoid errors of communication. Miscommunication can be catastrophic in
life, but also in engineering projects.

Logic is also a reasoning device. It is a set of rules that allow us to say things like if ABC is true, then
XYZ must also be true. In this course we will use logic both as a language and also as a reasoning device.6

Specification and verification: We will use logic to express properties of programs. Collectively these
properties define what it means for a program to be correct: they specify the program. This is called program
specification. We will also use the rules of logic to prove those properties. Proving that a program satisfies
its specification is called program verification.

In this course we will learn:

� to read functional programs with types

� to write functional programs with types

� to read formal specifications written in logic

� to write formal specifications in logic

� to read proofs

� to write proofs.

LEAN: In this course, we will use the LEAN theorem prover: https://leanprover.github.io/. We
will write programs in LEAN’s programming language, we will write specifications in LEAN’s logic, and we
will write proofs using LEAN’s proof system.

Install LEAN on your personal computer as soon as you read this:

IMPORTANT: YOU SHOULD INSTALL LEAN 3, NOT LEAN 4!!!

We found most helpful the instructions provided here: https://leanprover-community.github.io/.

5https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
6Logic goes far beyond what we will see in this course. Logic is the foundation of mathematics. It is also the foundation of

language, reason, and philosophy. It is also the foundation of truth. Logic is a fascinating subject, but this course is not really
about logic, despite the title. This course is using logic but it is not studying logic itself. A more accurate title for this course
might be Introduction to Formal Specification and Verification, or Introduction to the Science of Software, or something like
that.

2

https://leanprover.github.io/
https://leanprover.github.io/
https://leanprover-community.github.io/
https://leanprover-community.github.io/
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Other theorem provers: The goal of this course is not to teach you LEAN. The goal is to introduce you
to the science of software, formal logic, formal specification, and formal verification. We are using LEAN as
a tool and as a means to an end, rather than the end itself.7 LEAN is just one of many tools that could be
used for this purpose. Examples of other such tools are (in alphabetical order):

� ACL2s: http://acl2s.ccs.neu.edu/

� Agda: https://wiki.portal.chalmers.se/agda/

� Coq: https://coq.inria.fr/

� Idris: https://www.idris-lang.org/

� Isabelle: https://isabelle.in.tum.de/

� PVS: https://pvs.csl.sri.com/

The above list is by no means exhaustive. This is an active area of research, and new tools are being
developed or new capabilities are added to existing tools all the time. Each tool has its own pros and cons,
just like different programming languages and systems have their own pros and cons. Nevertheless, some
basic concepts and principles are common to all these tools. It is these concepts and principles that we strive
to teach you in this course, and it is these concepts and principles that you should strive to learn.

Having fun with proofs: Proving theorems with a tool like LEAN is a lot of fun. It’s like playing a
game. The goal of the game is to prove the theorem. This is like solving a puzzle, or finding our way out
of a maze. We will learn which moves to make to help us find the exit of the maze (if such an exit exists!).
WARNING: this game can become addictive!

How to succeed in this course: We learn by experimenting, asking questions, and making mistakes.
Making mistakes is great (as long as they are not catastrophic mistakes, like drinking and driving and car
crashing). Fortunately, computer science provides you with a very safe environment for making mistakes:
the worst that can happen is that your program doesn’t compile, or that it doesn’t return the right result.
No big deal!

In this course, what can go wrong? Maybe LEAN does not accept your function definition and you don’t
see why. Or maybe your function doesn’t work as expected. Or you cannot complete a proof.8 Etc. Try
to experiment to see what goes wrong. For LEAN specific things, consult the LEAN documentation. Ask
questions when you are deadlocked. Asking questions is fine and expected of you! Ask questions in class, on
piazza, during office hours, etc. There are no stupid questions.

A good way to know whether you are learning what you are supposed to be learning is whether you are
able to do all the homework problems by yourself. If you are, you will do well in the course. If you are
not, you should be worried. Come to our office hours if you are worried. So, again, do all the homework
problems by yourself! Do this in every homework, starting with the first homework, no matter
how easy you might think it is. Homeworks will get harder as we progress in the course. If you neglect
them in the beginning, you will be left behind and will have trouble catching up later on.

7You cannot learn to bike without a bicycle. Once you learned to bike, you can use pretty much any bicycle. LEAN is our
bicycle.

8Sometimes you may complete the proof and later find out that what you proved was not really what you meant or what
we asked you to prove. This is fine. It’s part of learning to write formal specifications and statements in logic. It’s also about
appreciating the need for precision and non-ambiguity.

3

http://acl2s.ccs.neu.edu/
http://acl2s.ccs.neu.edu/
https://wiki.portal.chalmers.se/agda/
https://wiki.portal.chalmers.se/agda/
https://coq.inria.fr/
https://coq.inria.fr/
https://www.idris-lang.org/
https://www.idris-lang.org/
https://isabelle.in.tum.de/
https://isabelle.in.tum.de/
https://pvs.csl.sri.com/
https://pvs.csl.sri.com/

4 These lecture notes

These lecture notes will be sparse. This is intentional. They are not meant to be a textbook, but rather a
guide for the course (like a map). The philosophy of the course is learning by doing. Is there any other way
to learn really?

In particular, these lecture notes are not about learning LEAN. There are many many good resources
on LEAN freely available online: examples, tutorials, online textbooks, and many more. Some references to
those are provided below.

These lecture notes will be permanently under construction. They will be updated regularly as we
advance in the course. The latest version (available at the course web page) will serve as the reference point.
Please look at the date of these notes, compare it to the date in your own copy, and use the latest version.

5 Other sources

Documentation on LEAN: There is a lot of documentation available on LEAN from the following web
sites:

� https://leanprover.github.io/

� https://leanprover-community.github.io/

� https://leanprover-community.github.io/papers.html

Unfortunately, there is no single document that matches exactly what we present in this course, so you
will have to collect information from multiple sources.9 Also, much of the LEAN documentation is under
construction and/or incomplete. We recommend starting with this (although there is a lot from the link
below that we will not cover/emphasize in this course, like type theory, dependent types, etc., for instance):

� https://leanprover.github.io/theorem_proving_in_lean

You can also consult the reference manual (unfortunately the programming part is missing):

� https://leanprover.github.io/reference/

You can also look directly at the LEAN code, libraries, etc.:

� https://github.com/leanprover/lean/tree/master/library/init

Formal mathematics: For those interested in using LEAN (or other theorem provers) for formal math-
ematics, here’s some links:

� https://leanprover-community.github.io/mathematics_in_lean/index.html

� https://www.quantamagazine.org/building-the-mathematical-library-of-the-future-20201001/,
https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/

(thanks to Samuel Lowe for suggesting these articles).

� The Future of Mathematics? talk by Kevin Buzzard: https://www.youtube.com/watch?v=Dp-mQ3HxgDE
(thanks to William Schultz for suggesting this link).

� Formalizing 100 Theorems: http://www.cs.ru.nl/F.Wiedijk/100/index.html.

� Machine-Checked Proofs and the Rise of Formal Methods in Mathematics talk by Leonardo de Moura:
https://simons.berkeley.edu/events/machine-checked-proofs-rise-formal-methods-mathematics-theoretically-speaking.
See also https://lean-fro.org/.

9This is also what you will have to do in your “real life” outside the university.

4

https://leanprover.github.io/
https://leanprover.github.io/
https://leanprover-community.github.io/
https://leanprover-community.github.io/
https://leanprover-community.github.io/papers.html
https://leanprover-community.github.io/papers.html
https://leanprover.github.io/theorem_proving_in_lean
https://leanprover.github.io/theorem_proving_in_lean
https://leanprover.github.io/reference/
https://leanprover.github.io/reference/
https://github.com/leanprover/lean/tree/master/library/init
https://github.com/leanprover/lean/tree/master/library/init
https://leanprover-community.github.io/mathematics_in_lean/index.html
https://leanprover-community.github.io/mathematics_in_lean/index.html
https://www.quantamagazine.org/building-the-mathematical-library-of-the-future-20201001/
https://www.quantamagazine.org/building-the-mathematical-library-of-the-future-20201001/
https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/
https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/
https://www.youtube.com/watch?v=Dp-mQ3HxgDE
https://www.youtube.com/watch?v=Dp-mQ3HxgDE
http://www.cs.ru.nl/F.Wiedijk/100/index.html
http://www.cs.ru.nl/F.Wiedijk/100/index.html
https://simons.berkeley.edu/events/machine-checked-proofs-rise-formal-methods-mathematics-theoretically-speaking
https://simons.berkeley.edu/events/machine-checked-proofs-rise-formal-methods-mathematics-theoretically-speaking
https://lean-fro.org/
https://lean-fro.org/

� AI to Assist Mathematical Reasoning: A Workshop (it says ‘AI’ but there is a lot of LEAN and
formal mathematics in this workshop): https://www.nationalacademies.org/event/06-12-2023/

ai-to-assist-mathematical-reasoning-a-workshop and https://nap.nationalacademies.org/

catalog/27241/artificial-intelligence-to-assist-mathematical-reasoning-proceedings-of-a-workshop

and https://docs.google.com/document/d/1kD7H4E28656ua8jOGZ934nbH2HcBLyxcRgFDduH5iQ0/edit?
usp=sharing.

� QED at Large survey paper by Talia Ringer et al: https://dependenttyp.es/pdf/QEDatLarge.pdf.

� Ethan Szeto, combined major in Computer Science and Mathematics, and student in my CS2800 Fall
2023 class, is working on proving theorems about prime numbers in LEAN: https://github.com/
ethanszeto/primality-testing.

Type Theory: LEAN is based on so-called type theory which studies type systems. LEAN has a type
system, and many (typed) programming languages also have type systems. Type systems are fundamental
in programming (languages), but also in logic and the foundation of mathematics. However, we will not
study type systems nor type theory in this class, as our main focus is to learn how to do proofs by doing.
Those interested in type theory can consult relevant courses in programming languages, or the references
below:

� Types and Programming Languages, by Benjamin C. Pierce.

� Advanced Topics in Types and Programming Languages, by Benjamin C. Pierce, editor.

� A short introduction to LEAN’s type system can be found here: https://leanprover.github.io/

theorem_proving_in_lean/dependent_type_theory.html. More details on it can be found in Mario
Carneiro’s The Type Theory of Lean, available from https://leanprover-community.github.io/

papers.html.

Software Foundations: https://softwarefoundations.cis.upenn.edu/. Software Foundations is a
book series available online. It goes much further than we do in this course, but its first part (Volume 1)
serves as good reading material for this course. Software Foundations uses a different theorem prover, called
Coq. LEAN is quite similar to Coq, and you should be able to follow and re-do most of the things described
in Software Foundations in LEAN. We often borrow exercises from Software Foundations and adapt them
to our course. We thank the authors of Software Foundations for making the series freely available.

Other Courses: In addition to the Software Foundations online series, there is a number of courses
available online which are related to our course. Here’s a partial list for those interested:

� Logic and Proof, at CMU: https://leanprover.github.io/logic_and_proof/. This course is also
based on LEAN.

� Logical Verification, at Vrije Universiteit Amsterdam: https://lean-forward.github.io/logical-verification/
2021/. This course is also based on LEAN.

� Semantics of Programming Languages, at TUMunich: http://www21.in.tum.de/teaching/semantik/
WS1920/. This course is based on another theorem prover called Isabelle.

� Formal Reasoning About Programs, at MIT: http://adam.chlipala.net/frap/. This course is based
on Coq.

A formal methods course database is available here: https://fme-teaching.github.io/courses/

5

https://www.nationalacademies.org/event/06-12-2023/ai-to-assist-mathematical-reasoning-a-workshop
https://www.nationalacademies.org/event/06-12-2023/ai-to-assist-mathematical-reasoning-a-workshop
https://www.nationalacademies.org/event/06-12-2023/ai-to-assist-mathematical-reasoning-a-workshop
https://www.nationalacademies.org/event/06-12-2023/ai-to-assist-mathematical-reasoning-a-workshop
https://nap.nationalacademies.org/catalog/27241/artificial-intelligence-to-assist-mathematical-reasoning-proceedings-of-a-workshop
https://nap.nationalacademies.org/catalog/27241/artificial-intelligence-to-assist-mathematical-reasoning-proceedings-of-a-workshop
https://nap.nationalacademies.org/catalog/27241/artificial-intelligence-to-assist-mathematical-reasoning-proceedings-of-a-workshop
https://nap.nationalacademies.org/catalog/27241/artificial-intelligence-to-assist-mathematical-reasoning-proceedings-of-a-workshop
https://docs.google.com/document/d/1kD7H4E28656ua8jOGZ934nbH2HcBLyxcRgFDduH5iQ0/edit?usp=sharing
https://docs.google.com/document/d/1kD7H4E28656ua8jOGZ934nbH2HcBLyxcRgFDduH5iQ0/edit?usp=sharing
https://docs.google.com/document/d/1kD7H4E28656ua8jOGZ934nbH2HcBLyxcRgFDduH5iQ0/edit?usp=sharing
https://docs.google.com/document/d/1kD7H4E28656ua8jOGZ934nbH2HcBLyxcRgFDduH5iQ0/edit?usp=sharing
https://dependenttyp.es/pdf/QEDatLarge.pdf
https://dependenttyp.es/pdf/QEDatLarge.pdf
https://github.com/ethanszeto/primality-testing
https://github.com/ethanszeto/primality-testing
https://github.com/ethanszeto/primality-testing
https://github.com/ethanszeto/primality-testing
https://leanprover.github.io/theorem_proving_in_lean/dependent_type_theory.html
https://leanprover.github.io/theorem_proving_in_lean/dependent_type_theory.html
https://leanprover.github.io/theorem_proving_in_lean/dependent_type_theory.html
https://leanprover.github.io/theorem_proving_in_lean/dependent_type_theory.html
https://leanprover-community.github.io/papers.html
https://leanprover-community.github.io/papers.html
https://leanprover-community.github.io/papers.html
https://leanprover-community.github.io/papers.html
https://softwarefoundations.cis.upenn.edu/
https://softwarefoundations.cis.upenn.edu/
https://leanprover.github.io/logic_and_proof/
https://leanprover.github.io/logic_and_proof/
https://lean-forward.github.io/logical-verification/2021/
https://lean-forward.github.io/logical-verification/2021/
https://lean-forward.github.io/logical-verification/2021/
https://lean-forward.github.io/logical-verification/2021/
http://www21.in.tum.de/teaching/semantik/WS1920/
http://www21.in.tum.de/teaching/semantik/WS1920/
http://www21.in.tum.de/teaching/semantik/WS1920/
http://www21.in.tum.de/teaching/semantik/WS1920/
http://adam.chlipala.net/frap/
http://adam.chlipala.net/frap/
https://fme-teaching.github.io/courses/
https://fme-teaching.github.io/courses/

Summer Schools and Seminars: There are also regularly held summer schools and other seminars on
logic and related formal techniques:

� See the Speaking Logicmaterial by Natarajan Shankar (http://fm.csl.sri.com/SSFT21/speaklogicV10.
pdf) as part of the Summer School on Formal Techniques: https://fm.csl.sri.com/SSFT22/.

� Vistas in Verified Software: https://www.newton.ac.uk/event/vs2w01/

� World Logic Day: https://logicday.vcla.at/ – and you can sing All you need is lo...! See https:

//logicday.vcla.at/vienna-logic-day-lecture/ for list of Vienna Logic Day Lectures. Other
related talks by Moshe Vardi: From Aristotle to the iPhone – https://www.youtube.com/watch?v=

wOQuW6QFdos; Technology Is Driving the Future, But Who Is Steering? – https://www.youtube.com/

watch?v=fL93WT3vy-0.

� On the unusual effectiveness of logic in computer science: see [8]. Slides and paper freely available
online as PDFs.

� For more summer schools, see this list: http://user.it.uu.se/~bengt/Info/summer-schools.shtml.

Textbooks: THERE IS NO REQUIRED TEXTBOOK FOR THIS COURSE. For those interested in
learning more about logic and its use in computer science in general and specification/verification in partic-
ular, here are some textbooks:

� Logic in Computer Science: Modelling and reasoning about systems, by Huth and Ryan [12].

� Mathematical Logic for Computer Science, 3rd Edition, by Mordechai Ben-Ari [2].

� Handbook of Practical Logic and Automated Reasoning, by Harrison [9].

� The Calculus of Computation - Decision Procedures with Applications to Verification, by Bradley and
Manna [4].

For those interested in learning more about verification and formal methods:

� Model Checking, by Clarke, Grumberg and Peled [5].

� Principles of Model Checking, by Baier and Katoen [1].

� Several books on the SPIN Model Checker, by Holzmann [10, 11].

� Books by Manna and Pnueli: The Temporal Logic of Reactive and Concurrent Systems: Specification,
Temporal Verification of Reactive Systems: Safety, and Temporal Verification of Reactive Systems:
Progress (the third is available online as an unpublished draft) [14, 15].

� Handbook of Model Checking, by Clarke, Henzinger, Veith, Bloem [6].

Other relevant books are the following:

� Computer-Aided Reasoning: An Approach by Kaufmann, Manolios and Moore [13].
See https://www.cs.utexas.edu/users/moore/publications/acl2-books/car/index.html.

� Coq’Art by Bertot and Castéran [3].

� Certified Programming with Dependent Types by Adam Chlipala.
Available at http://adam.chlipala.net/cpdt/.

� Formal Reasoning About Programs by Adam Chlipala.
Available at http://adam.chlipala.net/frap/.

6

http://fm.csl.sri.com/SSFT21/speaklogicV10.pdf
http://fm.csl.sri.com/SSFT21/speaklogicV10.pdf
http://fm.csl.sri.com/SSFT21/speaklogicV10.pdf
http://fm.csl.sri.com/SSFT21/speaklogicV10.pdf
https://fm.csl.sri.com/SSFT22/
https://fm.csl.sri.com/SSFT22/
https://www.newton.ac.uk/event/vs2w01/
https://www.newton.ac.uk/event/vs2w01/
https://logicday.vcla.at/
https://logicday.vcla.at/
https://logicday.vcla.at/vienna-logic-day-lecture/
https://logicday.vcla.at/vienna-logic-day-lecture/
https://logicday.vcla.at/vienna-logic-day-lecture/
https://logicday.vcla.at/vienna-logic-day-lecture/
https://www.youtube.com/watch?v=wOQuW6QFdos
https://www.youtube.com/watch?v=wOQuW6QFdos
https://www.youtube.com/watch?v=wOQuW6QFdos
https://www.youtube.com/watch?v=wOQuW6QFdos
https://www.youtube.com/watch?v=fL93WT3vy-0
https://www.youtube.com/watch?v=fL93WT3vy-0
https://www.youtube.com/watch?v=fL93WT3vy-0
https://www.youtube.com/watch?v=fL93WT3vy-0
http://user.it.uu.se/~bengt/Info/summer-schools.shtml
http://user.it.uu.se/~bengt/Info/summer-schools.shtml
https://www.cs.utexas.edu/users/moore/publications/acl2-books/car/index.html
https://www.cs.utexas.edu/users/moore/publications/acl2-books/car/index.html
http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/frap/
http://adam.chlipala.net/frap/

� Isabelle/HOL – A Proof Assistant for Higher-Order Logic by Nipkow et al [17].

� Concrete Semantics with Isabelle/HOL by Nipkow and Klein.
Available at http://www.concrete-semantics.org/.

� Functional Algorithms, Verified! by Nipkow et al.
Available at https://functional-algorithms-verified.org/.

The history of logic, in comics: The following is a wonderful book on the history of logic and foundations
of mathematics, written by famous computer scientist Christos Papadimitriou:

� Logicomix: An Epic Search for Truth, by Papadimitriou, Doxiadis and Papadatos [7].

An illustrated book of bad arguments: The following is a very nice book too: https://bookofbadarguments.
com/.

6 Research and Applications

The core topics dealt with in this course are specification and verification. These are currently very active
areas of research, with dozens of conferences and other events organized and hundreds of papers published
every year. These are some of the main events (a very very partial list):

� CAV: http://i-cav.org/

� POPL: https://popl23.sigplan.org/

� TACAS: https://etaps.org/2022/tacas

� FMCAD: https://fmcad.org/

Competitions: Research in this area is aided by tool competitions. There are several competitions,
depending on the specific problem (“sport”) of interest. Here’s some (again this is a partial list):

� The SAT competition: http://satcompetition.org/. See also: http://www.satlive.org/.

� The SMT competition: https://smt-comp.github.io/

� The Software Verification competition: https://sv-comp.sosy-lab.org/

� The Hardware Model Checking competition: http://fmv.jku.at/hwmcc20/

� VerifyThis: https://www.pm.inf.ethz.ch/research/verifythis.html

� The Verification of Neural Networks Competition: https://sites.google.com/view/vnn2021/home

� The Reactive Synthesis Competition: http://www.syntcomp.org/

� The Syntax-Guided Synthesis Competition: https://sygus.org/

� And many more! See: https://alastairreid.github.io/verification-competitions/

7

http://www.concrete-semantics.org/
http://www.concrete-semantics.org/
https://functional-algorithms-verified.org/
https://functional-algorithms-verified.org/
https://bookofbadarguments.com/
https://bookofbadarguments.com/
https://bookofbadarguments.com/
https://bookofbadarguments.com/
http://i-cav.org/
http://i-cav.org/
https://popl23.sigplan.org/
https://popl23.sigplan.org/
https://etaps.org/2022/tacas
https://etaps.org/2022/tacas
https://fmcad.org/
https://fmcad.org/
http://satcompetition.org/
http://satcompetition.org/
http://www.satlive.org/
http://www.satlive.org/
https://smt-comp.github.io/
https://smt-comp.github.io/
https://sv-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/
http://fmv.jku.at/hwmcc20/
http://fmv.jku.at/hwmcc20/
https://www.pm.inf.ethz.ch/research/verifythis.html
https://www.pm.inf.ethz.ch/research/verifythis.html
https://sites.google.com/view/vnn2021/home
https://sites.google.com/view/vnn2021/home
http://www.syntcomp.org/
http://www.syntcomp.org/
https://sygus.org/
https://sygus.org/
https://alastairreid.github.io/verification-competitions/
https://alastairreid.github.io/verification-competitions/

Verifying imperative code (list very incomplete!):

� C: CBMC http://www.cprover.org/cbmc/; Frama-C https://www.frama-c.com/

� Java: Java Pathfinder https://en.wikipedia.org/wiki/Java_Pathfinder

� see also the Software Verification competition: https://sv-comp.sosy-lab.org/

� see also Prof. Gene Cooperman’s research at Northeastern, in particular the McMini tool: https://
programming-journal.org/2024/8/1/, https://github.com/mcminickpt/mcmini, https://course.
ccs.neu.edu/cs7600/, https://course.ccs.neu.edu/cs7600/parent/thread-synch/, https://course.
ccs.neu.edu/cs7600/parent/homework/hw5/

Security and Cryptography (list very incomplete!):

� Tamarin: https://tamarin-prover.com/.

� SSProve: A Foundational Framework for Modular Cryptographic Proofs in Coq: https://eprint.

iacr.org/2021/397.

7 Specifications for software transparency and ethics

These days there is a lot of talk about computer science ethics: bias and fairness in AI and other systems,
and the like. Does this course have anything to contribute to that debate? I believe so. This course talks
about software specification, and specification is a description of what the software is supposed to do, and
not how exactly it does it. Specification can be the basis for software transparency. Without devulging
their intellectual property secrets (the how), companies can still reveal the what: what properties does their
software have? what is their software actually supposed to do? Then users of the software can make initial
judgements about the ethics of the software based on its specification.

8 What if all I want is to get a job?

Traditionally, formal methods (formal specification and verification) were very niche in the industry, confined
in application domains such as military/aerospace/avionics. But over time formal methods have become quite
mainstream, and are routinely being used in most industrial domains these days. See for instance (list very
incomplete!):

� [16]: https://www.amazon.science/publications/how-amazon-web-services-uses-formal-methods.

9 Course outline

Populated as we go along.

9.1 Introduction

Lecture 1. Module 01 on canvas. Slides: 01-intro.pdf.

� Course goals and logistics.

� A glimpse into LEAN.

� Introductions.

� Homework 01: your first proof!

8

http://www.cprover.org/cbmc/
http://www.cprover.org/cbmc/
https://www.frama-c.com/
https://www.frama-c.com/
https://en.wikipedia.org/wiki/Java_Pathfinder
https://en.wikipedia.org/wiki/Java_Pathfinder
https://sv-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/
https://programming-journal.org/2024/8/1/
https://programming-journal.org/2024/8/1/
https://programming-journal.org/2024/8/1/
https://programming-journal.org/2024/8/1/
https://github.com/mcminickpt/mcmini
https://github.com/mcminickpt/mcmini
https://course.ccs.neu.edu/cs7600/
https://course.ccs.neu.edu/cs7600/
https://course.ccs.neu.edu/cs7600/
https://course.ccs.neu.edu/cs7600/
https://course.ccs.neu.edu/cs7600/parent/thread-synch/
https://course.ccs.neu.edu/cs7600/parent/thread-synch/
https://course.ccs.neu.edu/cs7600/parent/homework/hw5/
https://course.ccs.neu.edu/cs7600/parent/homework/hw5/
https://course.ccs.neu.edu/cs7600/parent/homework/hw5/
https://course.ccs.neu.edu/cs7600/parent/homework/hw5/
https://tamarin-prover.com/
https://tamarin-prover.com/
https://eprint.iacr.org/2021/397
https://eprint.iacr.org/2021/397
https://eprint.iacr.org/2021/397
https://eprint.iacr.org/2021/397
https://www.amazon.science/publications/how-amazon-web-services-uses-formal-methods
https://www.amazon.science/publications/how-amazon-web-services-uses-formal-methods

9.2 Functional programming with types in LEAN

Lectures 2-6. Module 02 on canvas. Lecture code: 01-code.lean, 02-code.lean, 03-code.lean, 04-code.lean,

05-code.lean.

� Basic expressions, predefined operations and types in LEAN.

� #eval, #reduce, #check, #print

� Defining simple non-recursive functions in LEAN.

� Strong typing, type errors, and function types as input-output contracts.

� Predefined types bool, nat, int and list nat.

� Defining functions using pattern-matching.

� Recursive functions on nat and list nat.

� A word about termination.

� Anonymous functions (lambda abstraction).

� Functions and types as first-class citizens.

� Homework 02.

9.3 Testing as proving

Lectures 5-6. Module 03 on canvas. Lecture code: 05-code.lean, 06-code.lean.

� Writing regression tests using example.

� Introduction to proofs.

� The LEAN proof environment.

� The proof state, goals, and hypotheses.

� The reflexivity tactic.

� Tests = “mini theorems” with simple proofs.

� Product types and currying.

� Booleans and functions on booleans.

� Specification and proof by exhaustive testing.

9.4 Inductive data types

Lecture 7. Module 04 on canvas. Lecture code: 07-code.lean.

� Defining our own types.

� Inductive data types and constructors.

� Finite types: the type weekday.

� Infinite types: the type mynat.

� Defining recursive functions on inductive data types by pattern matching: redefining addition on nats.

� Homework 03.

9

9.5 Formal specifications, Intro to logic

Lectures 8-10. Module 05 on canvas. Lecture code: 08-code.lean, mylibrary09.lean, 09-code.lean.
Lecture slides: 09-propositional-logic.pdf, 10-propositional-logic.pdf.

� The type Prop.

� Properties and specifications.

� Informal and formal specifications.

� example, lemma, theorem.

� sorry.

� Importing library files with import.

� Logical connectives: negation, conjunction, disjunction, implication.

� Writing specifications with the universal quantifier forall (∀).

� Formal specification and verification.

� Introduction to logic: a brief history of logic, and a review of propositional logic: boolean expressions,
truth tables, satisfiability, validity, stronger, weaker, equivalent formulas.

9.6 Formal proofs by hand

Lectures 10-11. Module 06 on canvas. Lecture slides: 10-formal-proofs.pdf, 11-proof-rules.pdf.

� Informal vs formal proofs.

� Proof states, proof trees, examples.

� Proof rules.

� Homework 04.

9.7 Formal proofs in LEAN – dealing with logic connectives

Lectures 11 - 14. Module 07 on canvas. Lecture code: 11-code.lean, 12-code.lean, 13-code.lean,
14-code.lean, mylibrary14.lean.

� Proof assistants.

� Proving propositional logic tautologies in LEAN using bools vs Props.

� Eliminating ∀ or implication in the goal: the tactics intro and intros.

� Proof by cases: the cases tactic.

� The tactics assumption and exact.

� The tactic trivial: anything implies true.

� The tactic contradiction: false implies everything.

� Proving disjunctions in the goal: the tactics left and right.

� Proving conjunctions in the goal: the tactic split.

10

� Dealing with disjunctions and conjunctions in the hypotheses: the tactic cases, again.

� What it means for a tactic to apply to a given proof state: tactics as legal (but not always good) moves
in a game.

� Negation is an implication.

� Soundness and completeness: we cannot prove false.

� If-and-only-iff (iff) is a conjunction.

� Exclusive-OR (xor) is a disjunction.

� repeat.

� try.

� bool vs Prop, equality = vs iff ↔.

� Homework 05.

� Recap: where we stand.

� Review and practice for the exam.

� Exam 1 – 12 Oct 2023.

9.8 Theorems are functions! Calling lemmas and theorems; Classic vs con-
structive logic; Simplification tactics

Lectures 15 - 18. Module 08 on canvas. Lecture code: 15-code.lean, 16-code.lean, 17-code.lean,
18-code.lean, mylibrary18.lean..

� Theorems are functions that produce proofs! Propositions are types!

� Modus ponens: the tactic have.

� Nested proofs.

� Calling lemmas and theorems.

� Homework 06.

� Constructive vs. classic logic.

� The axioms classical.em (law of excluded middle) and classical.by contradiction.

� Proof by simplification.

� The rewrite tactic.

� The dunfold and unfold tactics.

� Rewriting equalities or equivalences.

� Homework 07.

� Rewriting at hypotheses.

� The power of rewrite.

11

� The dangers of overlapping.

� Simplifying equalities with constructors: the lemmas succeq and listeq.

� Theorems vs formulas.

� Tactics, deduction systems, and the meaning of logic.

� Provability vs semantic truth, revisited.

� Soundness and completeness, revisited.

9.9 Induction

Lectures 19 - 22. Module 09 on canvas. Lecture code: 19-code.lean, mylibrary20.lean, 20-code.lean,

21-code.lean, 22-code.lean, mylibrary23.lean.

� Proofs by induction. Base case. Induction step. Induction hypothesis.

� Expressing and using induction on natural numbers in LEAN: nat induction.

� The induction tactic.

� Induction on nats and lists of nats.

� Proof by induction vs proof by cases.

� Induction is only for inductive types.

� Induction for arbitrary inductive types.

� Multiple base cases.

� Multiple induction steps.

� Multiple induction hypotheses.

� Induction on trees.

� Simplifying if-then-elses: the lemmas itetrue and itefalse.

� Lemma discovery.

� Homework 08.

� Generalization.

� Choosing the induction variable.

� Induction and hypotheses.

� Delaying introductions.

� The tactic revert.

� How not to lose your bool cases.

� The tactic clear.

� LEAN’s notation.

� Homework 09.

12

9.10 The science of software; Undecidability

Lectures 23-24. Module 10 on canvas. Slides: 23-software-science.pdf. 24-undecidability.pdf. Notes:
terminator.pdf.

� Why this course?

� What is science? What is computer science? What is software science?

� What predictions can we make about the programs we write?

� Computability and decidability.

� Alan Turing.

� Undecidability of checking termination.

� The hardness of checking termination.

9.11 Proving Termination; Measure Functions

Lectures 25 - 27. Module 11 on canvas. Lecture code: 25-code.lean, 26-code.lean, 27-code.lean.

� Proving termination.

� Measure functions.

� Decreasing measure proof obligations.

� Homework 10.

9.12 Proof Automation; SAT and SMT Solvers

Lecture 28. Module 12 on canvas. Slides: 28-sat-proof-automation.pdf. Lecture code: 28-code.lean.
Z3 code: booltest01.txt, inttest01.txt, inttest02.txt, mixedtest01.txt. Papers: MalikCACM.pdf.

� The hardness of proving theorems.

� The hardness of proving software correctness.

� Proof automation.

� The satisfiability problem.

� Every finite problem can be encoded in SAT!

� SAT and SMT solvers.

9.13 Functional Induction

Lectures 29 - 30. Module 13 on canvas. Lecture code: 29-code.lean, 30-code.lean.

� Induction revisited: jumping every two steps.

� Strong vs “weak” induction.

� Functional induction.

� Convincing LEAN that a function terminates.

� Homework 09, 10 and 11 review.

13

9.14 Exam 2 – Wed 29 Nov 2023

9.15 Verifying imperative programs

Lectures 31 - 33. Module 14 on canvas. Lecture slides: 31-imperative.pdf. Lecture code: 32-code.lean,
33-code.lean.

� Imperative programming.

� The key concept of state.

� Hoare triples.

� Preconditions and postconditions.

� Deduction rules for Hoare triples.

� Loop invariants.

9.16 Test 3 – Wed 6 Dec 2023

14

10 Summary of LEAN proof tactics and their justification

We say that a tactic applies to a given proof state S when LEAN returns no error when we issue that tactic
at state S. The list of tactics given below also summarizes the conditions under which each tactic applies.

When a tactic applies to a certain proof state S1, it transforms S1 to a proof state S2, such that proving
S2 suffices (is enough) to prove S1. What this means is that if we can complete the proof from the new
proof state S2, then we have completed the proof from S1 as well. To complete the proof means to reach a
LEAN proof state that says goals accomplished.

Here’s a summary of the proof tactics that we have learned so far in this course:

1. reflexivity, abbreviated refl: applies when the goal is of the form A = A (or can be “easily”
simplified/reduced to A = A) and transforms the proof state to ’goals accomplished’.

Intuition/justification: “A is identical to A, for all A” is an axiom of logic, called reflexivity of
equality.

Sometimes refl also applies to goals that are of the form A = B, where A and B are not identical,
but are such that one can be reduced to the other after performing ’computations’ (reductions).

2. intro: applies when the goal is of the form ∀x : T, ...; eliminates ∀-quantified variable x from goal and
introduces x : T into the hypotheses.

Also applies when goal is of the form P → Q: turns goal into Q and introduces P in the hypotheses.

Intuition/justification: If I have to prove something like ∀x : T, P , it suffices to prove P assuming x
is an arbitrary element of type T . And if I have to prove P → Q then it suffices to prove Q assuming
P holds.

intro y renames the variable into y.

intros: repeatedly applies intro. Can also be called as intros x y z ..., to give the desired names to
the introduced objects.

3. cases x:

� if x is an element of a certain data type such as bool or nat, splits a proof/goal into several
subproofs/subgoals depending on the type of x;

Intuition/justification: If I have to prove P assuming that x is of some inductive data type
T , then it suffices to prove P for each of the possible objects that x could be, based on the
constructors of T .

� if x is a hypothesis of the form P ∨Q, splits a proof/goal into two subproofs/subgoals, one where
P is assumed, and another where Q is assumed;

Intuition/justification: If I have to prove G assuming that P ∨Q holds, then it suffices to prove
G in each of the two cases: Case (1): P holds, and Case (2): Q holds.

� if x is a hypothesis of the form P ∧Q, replaces x with two hypotheses, one stating that P holds,
the other stating that Q holds.

Intuition/justification: If I have to prove G assuming that P ∧Q holds, then it suffices to prove
G assuming that both P holds and Q holds.

If we add with ... at the end, then we can rename the variables or labels in the various cases.
Otherwise, LEAN picks the names for us.

4. assumption: discharges the goal when one of the hypotheses is identical to the goal.

exact H: discharges the goal when hypothesis H is identical to the goal.

Intuition/justification: G ⊢ G holds for any G (if I assume G to be true, then G is true).

15

5. trivial: discharges the goal when the goal is true.

Intuition/justification: A → true trivially holds for any A.

6. contradiction: discharges the goal when one of the hypotheses is false (or “obviously false”).

Intuition/justification: false → G trivially holds for any G.

7. left: when the goal is P ∨Q, transforms the goal into P .

Intuition/justification: to prove P ∨Q it suffices to prove P .

8. right: when the goal is P ∨Q, transforms the goal into Q.

Intuition/justification: to prove P ∨Q it suffices to prove Q.

9. split: when the goal is P ∧Q, splits the proof/goal into two subproofs/subgoals, one for P and one
for Q.

Intuition/justification: to prove P ∧Q it suffices to prove P and Q separately.

10. have H : P := ...: creates the new hypothesis H that P holds. We must then prove P , by filling
in the ... with a proof. This can be a nested proof (within begin ... end) or a proof produced by
calling the appropriate lemmas, theorems, or existing hypotheses.

Intuition/justification: to prove G from hypotheses H1, H2, ..., it suffices to (1) prove a new goal
P from hypotheses H1, H2, ..., and then (2) prove G using the existing hypotheses H1, H2, ... plus the
newly proved result H that P holds.

11. dunfold f : simplify/reduce function applications of the form (f e) based on the definition of the given
function f . If we add at H at the end, then the tactic applies to hypothesis H, instead of the goal.

Intuition/justification: If I have to prove P , and (f e) appears somewhere in P , and (f e) = g for
some g, then it suffices to prove P where (f e) is replaced by g.10

12. rewrite [<-] H: rewrites the goal based on the equality or equivalence H. H could be a function, a
hypothesis, or a previously defined/proven lemma/theorem.

By default rewrites from left to write. If <- is added, rewrites from right to left. Abbreviated rw.

If we add at D at the end, then the tactic applies to hypothesis D, instead of the goal.

Intuition/justification: If I rewrite based on a proven equality A = B, then in order to prove goal
G it suffices to prove G′ which is obtained from G by substituting any occurence of A with B (or vice
versa, of B with A, for rewrite <-). If I rewrite based on a proven equivalence G ⇔ G′ then I can
replace goal G with G′. If I rewrite function f and by definition of f I know that (f e) = g, then
similar to the intuition/justification of dunfold.

13. induction x: if x is an element of a certain inductive data type T, perform induction on x. Gener-
ates several proof obligations and the corresponding induction hypotheses (if any) depending on the
constructors of T.

Intuition/justification: If I have to prove P assuming that x:T, then it suffices to prove P for each
of the possible objects that x could be, based on the constructors of T. In doing so, I can assume that
P holds for all previously/already constructed objects of type T (induction hypotheses), in order to
prove P for a newly constructed object of type T (induction step).

14. revert x: if x:T is a variable of some data type T like nat, bool, etc, puts x back into the goal as
∀x... ; if x:P is a hypothesis that some proposition P holds, puts P back into the goal as P ->

10The phrase “replaced by g” is a bit simplistic, as the rules of substitution are not as trivial as they might seem at first
glance. Luckily, we don’t have to worry about defining precisely what the rules of substitution are, going over all its subtleties
(free vs. bound variables, etc), in this course. The reason is that LEAN is watching over us and performs substitutions correctly
on our behalf.

16

15. clear h: removes (no longer needed) hypothesis h from the proof state (to reduce clutter).

Other LEAN commands within proofs:

� sorry: tells LEAN we can’t finish this proof obligation right now, but we’ll come back to it later.

� try { ... } : attempt the sequence of tactics within { ... } once.

� repeat { ... } : repeats the sequence of tactics within { ... } as many times as it can.

17

References

[1] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[2] Mordechai Ben-Ari. Mathematical Logic for Computer Science, 3rd Edition. Springer, 2012.

[3] Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program Development – Coq’Art:
The Calculus of Inductive Constructions. Springer, 2004.

[4] A. R. Bradley and Z. Manna. The calculus of computation - decision procedures with applications to
verification. Springer, 2007.

[5] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

[6] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors. Handbook of
Model Checking. Springer, 2018.

[7] A. Doxiadis, C.H. Papadimitriou, A. Papadatos, and A. Di Donna. Logicomix: An Epic Search for
Truth. Bloomsbury USA, 2009.

[8] Joseph Y. Halpern, Robert Harper, Neil Immerman, Phokion G. Kolaitis, Moshe Y. Vardi, and Victor
Vianu. On the unusual effectiveness of logic in computer science. The Bulletin of Symbolic Logic,
7(2):213–236, 2001.

[9] John Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University Press,
2009.

[10] G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[11] G. Holzmann. The Spin Model Checker. Addison-Wesley, 2003.

[12] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge
University Press, 2004.

[13] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, 2000.

[14] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer-Verlag, New York, 1991.

[15] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-Verlag, New
York, 1995.

[16] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff. How Amazon Web
Services Uses Formal Methods. Commun. ACM, 58(4):66–73, March 2015.

[17] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL – A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

18

	Software
	Software science
	This course
	These lecture notes
	Other sources
	Research and Applications
	Specifications for software transparency and ethics
	What if all I want is to get a job?
	Course outline
	Introduction
	Functional programming with types in LEAN
	Testing as proving
	Inductive data types
	Formal specifications, Intro to logic
	Formal proofs by hand
	Formal proofs in LEAN – dealing with logic connectives
	Theorems are functions! Calling lemmas and theorems; Classic vs constructive logic; Simplification tactics
	Induction
	The science of software; Undecidability
	Proving Termination; Measure Functions
	Proof Automation; SAT and SMT Solvers
	Functional Induction
	Exam 2 – Wed 29 Nov 2023
	Verifying imperative programs
	Test 3 – Wed 6 Dec 2023

	Summary of LEAN proof tactics and their justification

