
 

The purpose of this section is to give a brief overview of the compiler function,
which will help the reader understand both how the compiler translates a high-
level language program into machine instructions. Keep in mind that the subject
of compiler construction is usually taught in a one- or two-semester course; our
introduction will necessarily only touch on the basics. 

Our description of the functions of a compiler follows the structure in Figure
2.31 on page 116. To illustrate the concepts in this section, we will use the C ver-
sion of a 

 

while

 

 loop from an earlier section:

 

while (save[i] == k) 
i += 1;

 

The Front End

 

The function of the front end is to read in a source program, check the syntax and
semantics, and translate the source program to an intermediate form that inter-
prets most of the language-specific operation of the program. As we will see, inter-
mediate forms are usually simple, and some are in fact similar to the Java
bytecodes, which can be found in Section 2.14. 

The front end is usually broken into four separate functions:

1.

 

Scanning

 

 reads in individual characters and creates a string of tokens.
Examples of 

 

tokens

 

 are reserved words, names, operators, and punctuation
symbols. In the above example, the token sequence is “while”, “(“, “save”, “[”,
“i”, “]”, “==”, “k”, “)”, “i”, “+=”, “1”. A word like “while” is recognized as a
reserved word in C, but “save”, “i”, and “j” are recognized as names, and “1”
is recognized as a number. 

2.

 

Parsing

 

 takes the token stream, ensures the syntax is correct, and produces
an 

 

abstract syntax tree

 

, which is a representation of the syntactic structure of
the program. Figure 2.12.1 shows what the abstract syntax tree might look
like for this program fragment. 

3.

 

Semantic analysis

 

 takes the abstract syntax tree and checks the program for
semantic correctness. Semantic checks normally ensure that variables and
types are properly declared and that the types of operators and objects
match, a step called 

 

type checking

 

. During this process, a symbol table rep-
resenting all the named objects—classes, variables, and functions—is usu-
ally created and used to type check the program.
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4.

 

Generation of the intermediate representation 

 

(IR) takes the symbol table
and the abstract syntax tree and generates the intermediate representation
that is the output of the front end. Intermediate representations usually use
simple operations on a small set of primitive types, such as integers, charac-
ters, and reals. Java bytecodes represent one type of intermediate form. In
modern compilers, the most common intermediate form looks much like
the MIPS instruction set but with an infinite number of virtual registers;
later, we describe how to map these virtual registers to a finite set of real
registers. Figure 2.12.2 shows how our example might be represented in
such an intermediate form. We capitalize the MIPS instructions in this sec-
tion when they represent IR forms.

 

FIGURE 2.12.1 An abstract syntax tree for the 

 

while

 

 example. 

 

The roots of the tree consist
of the informational tokens such as numbers and names. Long chains of straight-line descendents
are often omitted in constructing the tree.
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The intermediate form specifies the functionality of the program in a manner
independent of the original source. After this front end has created the intermedi-
ate form, the remaining passes are largely language independent.

 

Implementing Local Optimizations

 

Local optimizations are implemented on basic blocks by scanning the basic block in
instruction execution order looking for optimization opportunities. In the assignment
statement example on page 116 in the prior Section 2.11, the duplication of the entire
address calculation is recognized by a series of sequential passes over the code. Here is
how the process might proceed, including a description of the checks that are needed:

1. Determine that the two 

 

li

 

 operations return the same result by observing
that the operand 

 

x

 

 is the same and that the value of its address has not been
changed between the two 

 

li

 

 operations. 

2. Replace all uses of 

 

R106

 

 in the basic block by 

 

R101

 

.

 

          # comments are written like this--source code often included

          # while (save[i] == k) 

loop:     LI R1,save     # loads the starting address of save into R1

          LW R2,i

          MULT R3,R2,4 #Multiply R2 by 4

          ADD R4,R3,R1

          LW R5,0(R4) # load save[i]

          LW R6,k

          BNE R5,R6,endwhileloop

          # i += 1

          LW R6, i

          ADD R7,R6,1  # increment

          SW R7,i

          branch loop # next iteration

endwhileloop:

 

FIGURE 2.12.2 The 

 

while

 

 loop example is shown using a typical intermediate representation.

 

 In practice,
the names 

 

save, i, k

 

 would be replaced by some sort of address such as a reference to either the local stack
pointer or a global pointer and an offset, similar to the way 

 

save[i]

 

 

 

is accessed. Note that the format of the MIPS
instructions is different because they represent intermediate representations here: the operations are capitalized
and the registers use 

 

RXX

 

 notation.
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3. Observe that 

 

i

 

 cannot change between the two 

 

LW

 

s that reference it. So
replace all uses of 

 

R107

 

 by 

 

R101

 

.

4. Observe that the 

 

mult

 

 instructions now have the same input operands, so
that 

 

R108

 

 may be replaced by 

 

R102

 

.

5. Observe that now the two 

 

add

 

 instructions have identical input operands
(

 

R100

 

 and 

 

R102

 

), so replace the 

 

R109

 

 by 

 

R103

 

.

6. Use dead store code elimination to delete the second set of 

 

li

 

, 

 

lw

 

, 

 

mult

 

,
and 

 

add

 

 instructions since their results are unused.

Throughout this process, we need to know when two instances of an operand
have the same value. This is easy to determine when they refer to virtual registers,
since our intermediate representation uses such registers only once, but the prob-
lem can be trickier when the operands are variables in memory, even though we
are only considering references within a basic block. 

It is reasonably easy for the compiler to make the common subexpression elim-
ination determination in a conservative fashion in this case; as we will see in the
next subsection, this is harder when branches intervene.

 

Implementing Global Optimizations

 

To understand the challenge of implementing global optimizations, let’s consider
a few examples:

 

■

 

Consider the case of an opportunity for common subexpression elimina-
tion, say, of an IR statement like 

 

ADD Rx,R20,R50

 

. To determine whether
two such statements compute the same value, we must determine whether
the values of 

 

R20

 

 and 

 

R50

 

 are identical in the two statements. In practice,
this means that the values of 

 

R20

 

 and 

 

R50

 

 have not changed between the
first statement and the second. For a single basic block, this is easy to decide;
it is more difficult for a more complex program structure involving multiple
basic blocks and branches. 

 

■

 

Consider the second 

 

LW

 

 of 

 

i

 

 into 

 

R107

 

 within the earlier example on page
116: how do we know whether its value is used again? If we consider only a
single basic block and we know that all uses of 

 

R107

 

 are within that block, it
is easy to see. As optimization proceeds, however, common subexpression
elimination and copy propagation may create other uses of a value. Deter-
mining that a value is unused and the code is dead is more difficult in the
case of multiple basic blocks.

 

■

 

Finally, consider the load of 

 

k

 

 in our loop, which is a candidate for code
motion. In this simple example, we might argue it is easy to see that 

 

k

 

 is not
changed in the loop and is, hence, loop invariant. Imagine, however, a more
complex loop with multiple nestings and 

 

if

 

 statements within the body.
Determining that the load of 

 

k

 

 is loop invariant is harder in such a case.
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The information we need to perform these global optimizations is similar: we
need to know where each operand in an IR statement could have been changed or

 

defined

 

 (use-definition information). The dual of this information is also needed:
that is, finding all the uses of that changed operand (definition-use information).

 

Data flow analysis

 

 obtains both types of information. 
Global optimizations and data flow analysis operate on a 

 

control flow graph

 

,
where the nodes represent basic blocks and the arcs represent control flow between
basic blocks. Figure 2.12.3 shows the control flow graph for our simple loop exam-
ple, with one important transformation introduced. We describe the transforma-
tion in the caption, but see if you can discover it, and why it was done, on your own! 

Suppose we have computed the use-definition information for the control flow
graph in Figure 2.12.3. How does this information allow us to perform code motion?
Consider IR statements number 1 and 6: in both cases the use-definition information
tells us that there are no definitions (changes) of the operands of these statements
within the loop. Thus, these IR statements can be moved outside the loop. Notice that
if the 

 

LI

 

 of 

 

save

 

 and the 

 

LW

 

 of 

 

k

 

 are executed once, just prior to the loop entrance, the
computational effect is the same, but the program now runs faster since these two
statements are outside the loop. In contrast, consider IR statement 2, which loads the
value of 

 

i

 

. The definitions of 

 

i

 

 that affect this statement are both outside the loop,

 

 

 

FIGURE 2.12.3 A control flow graph for the 

 

while

 

 loop example. 

 

Each node represents a basic
block, which terminates with a branch or by sequential fall-through into another basic block that is also the
target of a branch. The IR statements have been numbered for ease in referring to them. The important
transformation performed was to move the 

 

while

 

 test and conditional branch to the end. This eliminates the
unconditional branch that was formerly inside the loop and places it before the loop. This transformation is
so important that many compilers do it during the generation of the IR. The 

 

MULT

 

 was also replaced with
(“strength-reduced to”) a 

 

SLL

 

.

8.      LW R6,i
9.      ADD R7,R6,1
10.    SW R7,i

1.      LI R1,save
2.      LW R2,i
3.      SLL R3,R2,2
4.      ADD R4,R3,R1
5.      LW R5,0(R4)
6.      LW R6,k
7.      BEQ R5,R6,startwhileloop
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where 

 

i

 

 is initially defined, and inside the loop in statement 10 where it is stored
into. Hence, this statement is not loop invariant. Figure 2.12.4 shows the code
after performing both code motion and induction variable elimination, which
simplifies the address calculation. The variable 

 

i can still be register allocated,
eliminating the need to load and store it every time, and we will see how this is
done in the next subsection. 

Before we turn to register allocation, we need to mention a caveat, which also
illustrates the complexity and difficulty of optimizers. Remember that the com-
piler must be conservative. To be conservative, a compiler must consider the fol-
lowing question: Is there any way that the variable k could possibly ever change in
this loop? Unfortunately, there is one. Suppose that the variable k and the variable
i actually refer to the same memory location, which could happen if they were
accessed by pointers or reference parameters. 

I am sure that many readers are saying, “Well, that would certainly be a stupid
piece of code!” Alas, this response is not open to the compiler, which must trans-
late the code as it is written. Recall also that the aliasing information must also be
conservative; thus, compilers often find themselves negating optimization oppor-
tunities because of a possible alias that exists in one place in the code or because of
incomplete information about aliasing.

 

FIGURE 2.12.4 The control flow graph representation of the while loop example after
code motion and induction variable elimination. The number of instructions in the inner loop has
been reduced from 10 to 6.

LW R6,i
ADD R7,R6,1
ADD R4,R4,4
SW R7,i

LI R1,save
LW R6,k
LW R2,i
SLL R3,R2,2
ADD R4,R3,R1

LW R5,0(R4)
BEQ R5,R6,startwhileloop
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Register Allocation
Register allocation is perhaps the most important optimization for modern
load-store architectures. Eliminating a load or a store eliminates an instruction.
Furthermore, register allocation enhances the value of other optimizations,
such as common subexpression elimination. Fortunately, the trend toward
larger register counts in modern architectures has made register allocation sim-
pler and more effective. Register allocation is done on both a local basis and a
global basis, that is, across multiple basic blocks but within a single function.
Local register allocation is usually done late in compilation, as the final code is
generated. Our focus here is on the more challenging and more opportunistic
global register allocation.

Modern global register allocation uses a region-based approach, where a region
(sometimes called a live range) represents a section of code during which a partic-
ular variable could be allocated to a particular register. How is a region selected?
The process is iterative:

1. Choose a definition (change) of a variable in a given basic block; add that
block to the region.

2. Find any uses of that definition, which is a data flow analysis problem; add
any basic blocks that contain such uses, as well as any basic block that the
value passes through to reach a use, to the region.

3. Find any other definitions that also can affect a use found in the previous
step and add the basic blocks containing those definitions, as well as the
blocks the definitions pass through to reach a use, to the region.

4. Repeat steps 2 and 3 using the definitions discovered in step 3, until con-
vergence.

The set of basic blocks found by this technique has a special property: if the desig-
nated variable is allocated to a register in all these basic blocks, then there is no
need for loading and storing the variable. 

Modern global register allocators start by constructing the regions for every virtual
register in a function. Once the regions are constructed, the key question is how to
allocate a register to each region: the challenge is that certain regions overlap and may
not use the same register. Regions that do not overlap (i.e., share no common basic
blocks) can share the same register. One way to represent the interference among
regions is with an interference graph, where each node represents a region and the arcs
between nodes represent that the regions have some basic blocks in common.

Once an interference graph has been constructed, the problem of allocating
registers is equivalent to a famous problem called graph coloring: find a color for
each node in a graph such that no two adjacent nodes have the same color. If the
number of colors equals the number of registers, then coloring an interference
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graph is equivalent to allocating a register for each region! This insight was the
initial motivation for the allocation method now known as region-based alloca-
tion, but originally called the graph-coloring approach. Figure 2.12.5 shows the
flow graph representation of the while loop example after register allocation. 

What happens if the graph cannot be colored using the number of registers
available? The allocator must spill registers until it can complete the coloring. By
doing the coloring based on a priority function that takes into account the num-
ber of memory references saved and the cost of tying up the register, the allocator
attempts to avoid spilling for the most important candidates. Spilling is equivalent
to splitting up a region (or live range); if the region is split, fewer other regions
will interfere with the two separate nodes representing the original region. A pro-
cess of splitting regions and successive coloring is used to allow the allocation pro-
cess to complete, at which point all candidates will have been allocated a register.
Of course, whenever a region is split, loads and stores must be introduced to get
the value from memory or to store it there. Choosing the location to split a region
must balance the cost of the loads and stores that must be introduced against the
advantage of freeing up a register and reducing the number of interferences. 

 

FIGURE 2.12.5 The control flow graph representation of the while loop example after
code motion and induction variable elimination and register allocation, using the MIPS
register names. The number of IR statements in the inner loop has now dropped to only 4 from 6 before
register allocation and 10 before any global optimizations. The value of i resides in $t2 at the end of the
loop and may need to be stored eventually to maintain the program semantics. If i were unused after the
loop, not only could the store be avoided, but in fact the increment inside the loop could be eliminated
completely!

ADD $t2,$t2,1
ADD $t4,$t4,4

LI $t0,save
LW $t1,k
LW $t2,i
SLL $t3,$t2,2
ADDU $t4,$t3,$t0

LW $t3,0($t4)
BEQ $t3,$t1,startwhileloop
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Modern register allocators are incredibly effective in using the large register
counts available in modern processors. In many programs, the effectiveness of regis-
ter allocation is limited not by the availability of registers but by the possibilities of
aliasing that cause the compiler to be conservative in its choice of candidates.

Code Generation

The final steps of the compiler are code generation and assembly. Most compilers
do not use a stand-alone assembler that accepts source; to save time, they instead
perform most of the same functions: filling in symbolic values and generating the
binary code as the final stage of code generation. 

In modern processors, code generation is reasonably straightforward, since the
simple architectures make the choice of instruction relatively obvious. For more
complex architectures, such as the IA-32, code generation is more complex since
multiple IR instructions may collapse into a single machine instruction. In mod-
ern compilers, this compilation process uses pattern matching with either a tree-
based pattern matcher or a pattern matcher driven by a parser.

During code generation, the final stages of machine-dependent optimization
are also performed. These include some constant folding optimizations, as well as
localized instruction scheduling (see Chapter 6).

Elaboration: Some more sophisticated compilers, and many research compilers,
use an analysis technique called interprocedural analysis to obtain more information
about functions and how they are called. Interprocedural analysis attempts to discover
what properties remain true across a function call. For example, we might discover that
a function call can never change any global variables, which might be useful in optimiz-
ing a loop that calls such a function. Such information is called may-information or flow-
insensitive information and can be obtained reasonably efficiently, although analyzing a
call to a function F requires analyzing all the functions that F calls, which makes the
process somewhat time consuming for large programs. A more costly property to dis-
cover is that a function must always change some variable; such information is called
must-information or flow-sensitive information. Recall the dictate to be conservative:
may-information can never be used as must-information—because a function may
change a variable does not mean that it must change it. It is conservative, however, to
use the negation of may-information, so the compiler can rely on the fact that a function
will never change a variable in optimizations around the call site of that function. 

One of the most important uses of interprocedural analysis is to obtain so-called
alias information. An alias occurs when two names may designate the same variable.
For example, it is quite helpful to know that two pointers passed to a function may
never designate the same variable. Alias information is almost always flow-insensitive
and must be used conservatively. 


