CSU2510H Exam 2 — Spring 2012

Name:

Student Id (last 4 digits):

e All problems must be done in Java. You
may use any Java we have used in class
and in lab; anything else must be defined.

e You may write ¢ — e as shorthand
for writing Tester.checkExpect; the
Examples class and test method around
the tests are not required.

e To add a method to an existing class defi-
nition, you may write just the method and
indicate the appropriate class name rather
than re-write the entire class definition.

e We expect data and interface definitions. Proll)lem Points Jout IO;C
e If an interface is given to you, you do 2 22
not need to repeat the contract and pur- 3 15
pose statements in your implementations. 4 15
Likewise, you do not need to repeat any 5 20
test cases given to you, but you should Total ]7

add tests wherever appropriate.

e Unless specifically requested, templates
and super classes are not required.

e Some basic test taking advice: Before
you start answering any problems, read
every problem, so your brain can think
about the harder problems in the back-
ground while you knock off the easy
ones.

Good luck!



Problem 1 While trying to manage the grade database, Asumu hit upon a new
idea for a data structure: the 2/3-tree. A 2/3-tree is either a leaf (which holds a
String value), a 2-node, or a 3-node. A 2-node has two children, and a 3-node
has three children. The twist is that a 2-node can’t have any 2-nodes as children,
and a 3-node can’t have any 3-nodes as children.

Here’s an example of a 2/3-tree:

"Bread"

"Rhinocerous"

IlZebrall IIDOgII IICatll

1. Design data, class, and interface definitions, in Java, to represent 2/3-trees.
Construct the above example using your definitions.

2. Design the height method, which computes the height of the tree (i.e., the
maximum distance from the root to a leaf). The example tree has a height
of 4. You may find the function Math.max useful; it takes two numbers and
produces the largest.



[Here is some more space for the previous problem.]



[Here is some more space for the previous problem.]



Problem 2

1. Design a TreeVisitor interface for 2/3-trees, and implement the accept
method in all of your classes from the previous problem. Make sure you
design the interfaces and methods so that a visitor can return any type of
data.



[Here is some more space for the previous problem.]



2. Design the CountVisitor class, which counts the number of leaves in a
2/3-tree (there are 6 in the given example.)



3. Design the LongestVisitor class, which produces the longest String in
a 2/3-tree. The longest string in the example is "Rhinocerous".



Problem 3 In mathematics, an unordered pair is a pair of values in which the
order of the elements does not matter. So for example, if {3,4} is an unordered

pair, then it should be considered “the same” as the unordered pair {4, 3}. Here is

an implementation of UnPair, which represents unordered pairs. Notice that both

equals and hashCode have been overridden.

class UnPair<X> {

X left;

X right;

UnPair(X left, X right) {
this.left = left;
this.right = right;

}

// Compute the hash of this unordered pair.
public int hashCode() {

return left.hashCode();
}

// Is this unordered pair the same as the given unordered pair?
public boolean same(UnPair<X> p) { ... }

// Is this unordered pair the same as the given object?
public boolean equals(Object that) {
return (that instanceof UnPair)
&& this.same((UnPair<X>)that);



1. Implement the omitted same method that compares this unordered pair to a
given unordered pair. This method should work regardless of the order of
the pair, so for example new UnPair<Integer>(3,4) is the same (accord-
ing to same) as new UnPair<Integer>(4,3).

10



2. Assuming same and equals work as expected, is the given hashCode method
valid? That is, does it satisfy or violate the law of hashCode? If it is valid,
give an argument for why. If it is not, give a counter-example to the law of
hashCode.

11



Problem 4 Lists are nice, but sometimes it would be better to have a list without
an end. For example, we might want to model the days of the week as a list that

wraps around at the end so that Monday follows Sunday. To do so, we need lists

that are circular, and in order to make circular lists, we need to use mutation.

Here’s an idea for a list method that makes is possible to create cyclic lists:

interface List<X> {
// EFFECT: set the rest of the last cons in this list
// to the given list.
void setTail(List<X> 1s);

+

It works as follows:

List<Integer> waltz =
new Cons<Integer>(1,
new Cons<Integer>(2,
new Cons<Integer>(3,
new MT<Integer>())));

At this point, waltz is just a list of three elements 1, 2, 3. To make the list
circular we can call setTail giving waltz as the new tail:

waltz.setTail(waltz);
Now waltz is a list of elements: 1, 2, 3, 1, 2, 3, 1, 2, 3, ..., and so
on, ad infinitum.

Of course, it’s also possible to use setTail to update a list in a non-circular
way. Imagine instead we had just done:

waltz.setTail (new Cons<Integer>(4, new MT<Integer>()));

In this case, waltz is now just 1, 2, 3, 4.

12



Design an implementation of setTail that works as described. Revise the
List<X> interface with any methods you need to add to make setTail work.
(You’ll notice that the effect statement for setTail implies that this list cannot be
empty; if you try to setTail on an empty list, you may raise an exception.)

13



[Here is some more space for the previous problem.]

14



Problem S Iterators are an extremely useful concept. In particular, they aren’t
limited to iterating over the contents of data structures such as ArrayLists. We
can also construct iterators directly for sequences we are interested in.

1. Design the class RangeIterator, which takes two Integers as constructor
arguments, and iterates over all of the Integers between them, including
both end points. RangeIterator must implement the Iterator interface,
given below.

interface Iterator<T> {
Boolean hasNext();
T next();
// Java requires an Iterator to define remove,
// but you do *not* need to implement remove.

15



[Here is some more space for the previous problem.]

16



2. Recall our definition of function objects:

interface Function<T,U> {
U call(T x);
}

Define the Square class, which is a Function that squares Integers.

17



3. Using this interface, design and implement the MapIterator class, which
takes a Function and an Iterator as arguments, and iterates over the
values produced by applying the function to each result produced by the
iterator.

18



4. Now design the method sumSquares, which takes two Integers, and uses
the classes you’ve just defined, along with a for or while loop, to compute
the sum of the squares of all the numbers between the given Integers,
inclusive.

19



[Here is some more space for the previous problem.]

20



