
CSU2510H Exam 1 – Spring 2012

Name:

Student Id (last 4 digits):

• You may use the usual primitives and ex-
pression forms of any of the class lan-
guages; for everything else, define it.

• You may write c → e as shorthand for
(check-expect c e).

• To add a method to an existing class defi-
nition, you may write just the method and
indicate the appropriate class name rather
than re-write the entire class definition.

• We expect data and interface definitions.

• If an interface is given to you, you do
not need to repeat the contract and pur-
pose statements in your implementations.
Likewise, you do not need to repeat any
test cases given to you, but you should
add tests wherever appropriate.

• The extra credit problem is all or nothing;
no partial credit will be awarded.

• Unless specifically requested, templates
and super classes are not required.

• Some basic test taking advice: Before
you start answering any problems, read
every problem, so your brain can think
about the harder problems in the back-
ground while you knock off the easy
ones.

Good luck!

Problem Points /out of
1 / 18
2 / 10
3 / 15
4 / 15
5 / 18

Extra / 5
Total / 76+5



18 POINTSProblem 1 Here is a data definition for a class of objects. It intentionally uses
meaningless names to test whether you’ve sufficiently internalized the data-driven
development process we’ve talked about since the Fall.

;; A P is one of:

;; - A ;; An A is a (new a% String)

;; - B ;; A B is a (new b% String A)

;; - C ;; A C is a (new c% P)

(define-class a% (fields w))

(define-class b% (fields x y))

(define-class c% (fields z))

Design the following methods for Ps:

1. size - the size of an A is 5; the size of a B is 8, regardless of what’s inside;
and the size of a C contributes 1 to the size of the P inside.

2. replace-x - produces a P like this one, but with any x field replaced by the
given string.

3. same-x-and-w? - given two strings, produce true if this P contains a B

whose x is equal to the first given string and whose y is an A whose w is
equal to the second given string. Produces false otherwise.

Be sure to define any interfaces you need and say which classes implement
which interfaces so that your program treats all values according to their interface.

2



[Here is some more space for the previous problem.]

3



[Here is some more space for the previous problem.]

4



10 POINTSProblem 2 Here are data, class, and interface definitions for a list of numbers:

;; An LoN is one of:

;; - (new mt%)

;; - (new cons% Number LoN)

;; and implements:

;; - sum : -> Number

;; Compute the sum of the numbers in this list.

;; - sqrs : -> LoN

;; List of squares of each number in this list.

(define-class mt%

(define (sum) 0)

(define (sqrs) this))

(define-class cons%

(fields first rest)

(define (sum)

(+ (this . first)

(this . rest . sum)))

(define (sqrs)

(new cons%

(sqr (this . first)) ; (sqr x) = x2

(this . rest . sqrs))))

Here are some examples:

(check-expect ((new mt%) . sum) 0)

(check-expect ((new cons% 4 (new cons% 5 (new mt%))) . sum) 9)

(check-expect ((new mt%) . sqrs) (new mt%))

(check-expect ((new cons% 4 (new cons% 5 (new mt%))) . sqrs)

(new cons% 16 (new cons% 25 (new mt%))))

5



Develop the sum-sqrs method that computes the sum of the squares of a list of
numbers. Here is an example:

(check-expect ((new cons% 4 (new cons% 5 (new mt%))) . sum-sqrs)

(+ 16 25))

If you can, define a super class of mt% and cons% and lift the definition of
sum-sqrs to this class. (We will assume the appropriate super declaration in
mt% and cons%.) If you cannot, define methods in both mt% and cons% for partial
credit.

6



15 POINTSProblem 3 In order to manage class scheduling, the College decided that they
needed to create a new implementation of the Set data structure. They went with
the lowest bidder, which turned out to be a bunch of BU students. Now, having
paid for this code, the College needs to test it, and they turn to you.

Unfortunately, the code the BU students produced is so convoluted that it
doesn’t bear looking at. All you have to go on is that the Set data structure obeys
the following interface:

;; A Set implements:

;; - insert : String -> Set

;; adds given string to this set, if it isn’t already there

;; (otherwise produces this set)

;; - remove : String -> Set

;; removes given string from this set, if it’s already there

;; (otherwise produces this set)

;; - size : -> Number

;; count the elements of this set

;; - has? : String -> Boolean

;; is the given String in this set?

;; empty-set is a Set value containing no elements

Sets should satisfy the following property, called the “insert-size” property, for
any element and set:

If we insert any element into any set, then the resulting set is the same
size as the original set if the element was already in the set, and the
resulting set is one larger than the original set if the element was not
already in the set.

1. Codify the “insert-size” property as a predicate. Write a test case that should
pass (if the sets work right) using the predicate you have defined.

7



[Here is some more space for the previous problem.]

8



The College wants to be really sure that their sets are correct, and they’ve come up
with another property that they think is true, called the “insert-remove” property:

If we insert element any element a into any set, and then remove any
element b from the resulting set, the result has the same size as if we
do the two operations in the reverse order, i.e., remove b, then insert
a.

The College is considering adding this to the test suite as well.

2. Codify this property as a predicate, and write a test case that should pass
using the predicate.

3. Is the “insert-remove” property true for all sets? If so, give an explanation.
If not, write a counter-example (i.e., a failing test case) using your predicate.

9



[Here is some more space for the previous problem.]

10



15 POINTSProblem 4 Here are data and class definitions for representing the files and di-
rectories of a computer:

;; An Elem is one of

;; - (new file% String Number)

;; - (new dir% String LoElem)

(define-class file% (fields name size))

(define-class dir% (fields name elems))

;; A LoElem is one of

;; - (new mt%)

;; - (new cons% Elem LoElem)

(define-class mt%)

(define-class cons% (fields first rest))

Here is an example of a directory tree and its representation as an Elem:

#|

User

+-- A

| +-- a.txt

| +-- B

| +-- b.rkt

+-- C

+-- c.c

|#

(define mt (new mt%))

(define a (new file% "a.txt" 5))

(define b (new file% "b.rkt" 10))

(define c (new file% "c.c" 1000))

(define C/ (new dir% "C" (new cons% c mt)))

(define B/ (new dir% "B" (new cons% b mt)))

(define A/ (new dir% "A" (new cons% a (new cons% B/ mt))))

(define User/ (new dir% "/" (new cons% A/ (new cons% C/ mt))))

11



Your job is to implement one of the main tasks of the common Unix utility find,
which gives a list of all the files within an element. To do so, add a list-files

method of Elem which produces a list of files. So for example, we expect:

(check-expect (User/ . list-files)

(new cons% a (new cons% b (new cons% c mt))))

Hint: it may come in handy to be able to concatenate two LoElem together.

12



[Here is some more space for the previous problem.]

13



18 POINTSProblem 5 Last night, Asumu was up late improving the class languages. Un-
fortunately, he was too tired to test his work, and his last commit broke the numeric
system. This puts us in the dire position of no longer being able to calculate the
factorial of large numbers, and we turn to you for help.

This is the definition of a class of functional objects with a fact method:

;; A Fact is (new fact%) and implements

;; - fact : Natural -> Natural

;; Compute n!.

(define-class fact%

(define (fact n)

(cond [(zero? n) 1]

[else (* n (this . fact (sub1 n)))])))

(check-expect ((new fact%) . fact 0) 1)

(check-expect ((new fact%) . fact 5) 120)

Since we can no longer rely on built in numbers to represent Naturals, we
will represent Naturals with objects and then rewrite the fact method to operate
over this new kind of data.

Here is the Natural interface:

;; A Natural implements:

;; - zero? : -> Boolean

;; is this Natural the zero value?

;; - sub1 : -> Natural

;; produce a natural one less than this natural

;; (or zero if this natural is zero)

;; - times : Natural -> Natural

;; multiply this natural by the given natural

14



Write a new definition of the fact method using the Natural interface def-
inition given above, and not using the built-in numbers of the class system or
DrRacket. You can assume there is a defined constant one, which is a Natural

object representing 1.

(check-expect ((new fact%) . fact one) one)

(check-expect ((new fact%) . fact (one . sub1)) one)

15



Now, design data and class defintions that implement Natural, and supports
the methods zero?, sub1, and times. Define the constant one. (Hint: remember
that the natural numbers can be seen as a recursive union; a natural number is
either zero, or one more than a natural number.)

It will be helpful to define the helper methods add1 and plus. Also, remember
that n+m = (n− 1) +m+ 1 and that n ·m = (n− 1) ·m+m. Don’t overlook
the slightly weird specification for sub1: 0 − 1 = 0; this weirdness is common
amongst mathematicians when working with natural numbers.

16



[Here is some more space for the previous problem.]

17



5 POINTSProblem 6 Extra Credit
After Van Horn discovered the problems with numbers, he attempted to fix them.
Unfortunately, not only did he not fix them, he broke booleans as well. For-
tunately, we have an idea about how you can help, expressed in the following
interface definitions.

;; A Bool implements:

;; - branch : [Action X] [Action X] -> X

;; run the first action if this bool is true,

;; otherwise run the second action

;; An [Action X] implements:

;; - run : -> X

;; run this action

Following these interface definitions, design data and class defintions for im-
plementations of the Bool interface, and reimplement the fact method to use
them. You will need to provide new defintions for true and false, since they
were broken by this catastrophe as well.

18



[Here is some more space for the previous problem.]

19


