
CSU2510H Exam 1 – Spring 2011

Name:

Student Id (last 4 digits):

• You may use the usual primitives and ex-
pression forms of any of the class lan-
guages; for everything else, define it.

• You may write c → e for
(check-expect c e) and λ for
lambda to save time writing.

• To add a method to an existing class defi-
nition, you may write just the method and
indicate the appropriate class name rather
than re-write the entire class definition.

• We expect data and interface defini-
tions (although interfaces may be de-
fined in comments rather than with
define-interface).

• If an interface is given to you, you do
not need to repeat the contract and pur-
pose statements in your implementations.
Likewise, you do not need to repeat any
test cases given to you, but you should
add tests wherever appropriate.

• Some basic test taking advice: Before
you start answering any problems, read
every problem, so your brain can be
thinking about the harder problems in
background while you knock off the easy
ones.

Good luck!

Problem Points /out of
1 / 17
2 / 18
3 / 12
4 / 21
5 / 15

Total / 83



17 POINTSProblem 1 A range represents a set of numbers between two endpoints. To start
with, you only need to consider ranges that include the smaller endpoint and ex-
clude the larger endpoint—such ranges are called half-open. For example, the
range [3, 4.7) includes all of the numbers between 3 and 4.7, including 3 but not
including 4.7. So 4 and 3.0000001 are both in the range, but 5 is not. In the
notation used here, the [ means include, and the ) means exclude.

1. Design a representation for ranges and implement the in-range? method,
which determines if a number is in the range. For example, the range [3, 7.2)
includes the numbers 3 and 5.0137, but not the numbers −17 or 7.2.

2. Extend the data definition and implementation of ranges to represent ranges
that exclude the low end of the range and include the high end, written
(lo, hi].

3. Add a union method to the interface for ranges and implement it in all
range classes. This method should consume a range and produces a new
range that includes all the numbers in this range and all the numbers in the
given range.

You may extend your data definition for ranges to support this method.

You may apply the abstraction recipe, but you are not required to do so; you
will not be marked down for duplicated code on this problem.

2



[Here is some more space for the previous problem.]
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18 POINTSProblem 2 Here are data, class, and interface definitions for Shapes:

;; A Shape is one of:

;; - (rect% Number Number)

;; - (circ% Number)

;; implements:

;; bba : -> Number (short for "bounding-box-area")

;; Compute the area of the smallest bounding box for this shape.

(define-class rect%

(fields width height))

(define-class circ%

(fields radius))

Here are some examples of how bounding-box-area should work:

(check-expect ((rect% 3 4) . bba) 12)

(check-expect ((circ% 1.5) . bba) 9)

1. Design the bba method for the rect% and circ% class.

2. Design a super class of rect% and circ% and lift the bba method to the su-
per class. Extend the shape interface as needed, but implement any methods
you add.

3. Design a new variant of a Shape, Square, which should support all of the
methods of the interface.
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[Here is some more space for the previous problem.]
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12 POINTSProblem 3 One perspective that unifies the paradigms of programming with func-
tions and programming with objects is to view a “function” as an object that un-
derstands a method called apply. With that in mind, we can define an interface
for functions-as-objects:

;; A [IFun X Y] implements:

;; apply : X -> Y

;; Apply this function to the given input.

Here we are representing a X -> Y function as an object that has an apply

method that consumes an X and produces a Y.

1. Design a class that wraps a real function with contract (X -> Y) to imple-
ment [IFun X Y].

2. Using your wrapper class, construct the objects representing the “add 1”
function and “sub 1” function.

3. Another useful operation on functions is composition. Here is the interface
for a compose method that composes two functions represented as objects:

;; [IFun X Y] also implements:

;; compose : [IFun Y Z] -> [IFun X Z]

;; Produce a function that applies this function to its input,

;; then applies the given function to that result.

For example, if addone and subone refer to the objects you constructed in
part 2, the following check should succeed:

(check-expect ((addone . compose subone) . apply 5) 5)

(check-expect ((addone . compose addone) . apply 5) 7)

Implement the compose method for your wrapper class.
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21 POINTSProblem 4 The Northeastern University Registrar is instituting a new course reg-
istration system, in which each student will wait in a “Virtual Line” until every
student ahead of them has registered. A simple way to represent a line (also
known as a queue) is by using a list. But this representation makes it slow to add
somebody to the end of the line (or to take somebody off the front of the line,
depending on whether the front of the list represents the front or rear of the line).

In order to provide maximal waiting efficiency, you have been tasked with
implementing a representation that uses two lists! The key idea of this fancy
representation is that one list will represent some portion of the front of the line,
while the other will represent the remainder of the line in reverse order. So if
you’re the first element of the first list, you are at the head of the line. On the other
hand, if you’re the first element of the second list, you are the very last person in
line. Here is the interface for queues:

;; A [IQ X] implements:

;;

;; head : -> X

;; Produce the element at the head of this queue.

;; Assume: this queue is not empty.

;;

;; deq : -> [IQ X] (Short for "dequeue")

;; Produces a new queue like this queue, but without

;; this queue’s first element.

;; Assume: this queue is not empty.

;;

;; enq : X -> [IQ X] (Short for "enqueue")

;; Produce new queue with given element added to the

;; END of this queue.

;;

;; emp? : -> Boolean

;; Is this queue empty?

The head and deq operations require that the queue be non-empty when they
are used, but this can be assumed and these operations do not need to check for an
empty queue.

Further, the Registrar’s office has just learned about invariants, and insists on
maintaining the following invariant about all of their queues:

if the front of the queue is empty, the whole queue must also be empty.
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The Registrar’s office has given you three tasks to prepare their Virtual Line for
its launch later this semester:

1. Design an implementation of the queue data structure to the Registrar’s
specifications. You must maintain the invariant stated above, and you should
take advantage of the invariant when implementing the operations.

2. Unfortunately, when testing the queue, the Registrar has discovered that
some queues with the same elements in the same order can be represented in
multiple ways. Give an example of two different representations of the same
queue. Implement a to-list operation which produces a list of elements
going in order from the front to the rear of the queue. In your tests, you
should show how this addresses the problem.

3. The Registrar has a problem with careless data entry. Design and implement
a constructor for queues which, given two input lists of elements, ensures
that the invariant is maintained.
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[Here is some more space for the previous problem.]

13



[Here is some more space for the previous problem.]

14



15 POINTSProblem 5 Here is a simple interface and implementation for dictionaries that
associate natural numbers to strings.

;; A Dict is one of:

;; - (ld-empty%)

;; - (ld-cons% Nat String Dict)

;; implements:

;;

;; has-key? : Nat -> Boolean

;; Does this dict. have the given key?

;;

;; lookup : Nat -> String

;; Produce the value associated with the given key in this dict.

;; Assume: the key exists in this dict.

;;

;; set : Nat String -> Dict

;; Associate the given key to the given value in this dict.

(define-class ld-empty%

(define/public (has-key? k) false)

(define/public (set k v)

(ld-cons% k v this)))

(define-class ld-cons%

(fields key val rest)

(define/public (has-key? k)

(cond [(= (field key) k) true]

[else ((field rest) . has-key? k)]))

(define/public (lookup k)

(cond [(= (field key) k) (field val)]

[else ((field rest) . lookup k)]))

(define/public (set k v)

(ld-cons% k v this)))
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The dictionary data structure has some important properties, one of which is
that if we associate a value with a key and then look up that key, we expect to
get back the value we associated. For example, for any given dictionary, if we
associate 1 with "Fred", then look up 1, we should get "Fred". More generally,
we expect this to be true for any key-value pair, not just 1 and "Fred".

1. Codify the general “set/lookup” property, described above, as a predicate.
Write a successful test in terms of that predicate.

Now consider a generalization of the “set/lookup” property which says that
if we set two keys to two values then look each of them up, we should get back
the original values. For example, for any given dictionary, if we associate 1 with
"Fred" and 2 with "Wilma"; then looking up 1 will produce "Fred" and looking
up 2 will produce "Wilma¨. More generally, we can state this as a property for
any two key-value pairs.

2. Codify the general “double-set/lookup” property as a predicate. Write a
successful test in terms of that predicate.

3. Does this property hold for all dictionaries and keys-value pairs? If so,
why? If not, write a counter-example, i.e. write a failing test in terms of the
predicate you gave in part 2.
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