CS 2500 Exam 1 HONORS SUPPLEMENT - Fall 2012

Name:

Student Id (last 4 digits):

Instructor’s Name:

e This supplement to Exam 1 is in-

tended for students enrolled in the Problem | Points Jout of
Honors section of 2500. ; 2

e See the instructions on the regular 3 12
exam. 4 14

5 8

Total 44

Good luck!



Problem 1 Recall Problem 4 from the regular portion of the exam. Your next
task as consultant is to design a program, donor-names, that consumes a list of
donations and produces a list of all the donors’ names.

Consider the following list of donations:

(define lod2012 (list 40
(make—-donation "Vona" 2500)
(make—-donation "Shivers" 100)
(make—donation "Shivers" 600)
31
(make—-donation "Ahmed" 2000)
(make—-donation "Vona" 2500)))

Given 10d2012 as input, donor—names should produce:

(list "Vona" "Shivers" "Shivers" "Ahmed" "Vona")
You may use the following data definition for a list of strings:

;; A LOS is one of:

;7 — empty
;; — (cons String LOS)



[Here is some more space for the previous problem.]



Problem 2 The campaign would like to contact past donors to ask them to donate
again. But there’s a problem: the list of names produced by donor—-names
contains duplicates. The campaign doesn’t want to send duplicate messages to the
same donor—annoying one’s supporters is not good strategy!
Your next task is to design the remove-duplicates program which takes
a list of strings and removes duplicates from the list.
For example:

(remove—-duplicates
(list "Vona" "Shivers" "Shivers" "Ahmed" "Vona")) --——>
(list "Vona" "Shivers" "Ahmed")

You may design helper functions as needed, but they should be designed according
to the recipe.



[Here is some more space for the previous problem.]



Problem 3 Recall Problem 5 from the regular portion of the exam where we were
concerned about unscrupulous, wealthy donors getting around the laws on cam-
paign donations by donating multiple times. The campaign you’re working for
would like to keep track of the total amounts donated by each named donor so
that they can easily spot such violations. Your next task, therefore, is to design
a program, coalesce, that consumes a list of donations and produces a list of
donations in which multiple donations by the same named donor have been coa-
lesced into a single donation of the total amount donated by that individual (and
all anonymous donations in the input list are ignored).
For example, given 10d2012 (from Problem 1) as input, we’d want coalesce

to produce:

(list (make—-donation "Vona"™ 5000)
(make—-donation "Shivers" 700)
(make—-donation "Ahmed"™ 2000))

You may design helper functions as needed, but they should be designed ac-
cording to the recipe. Feel free to use any functions you’ve previously developed
(on the honors supplement or the regular portion of the exam).



[Here is some more space for the previous problem.]



Problem 4 In computer science, programmers often work with binary trees. Bi-
nary trees are made up of nodes which have exactly two children (usually labeled
left and right) that are themselves binary trees, and leaves (which have no
children).
For this problem, you will work with weighted binary trees, which are binary
trees whose leaves carry weights. Here is a data definition for a weighted binary
tree:

(define-struct node (left right))

;; A WBT (weighted binary tree) is one of:

¥ Weight ; leaf, carrying a weight
;; — (make—-node WBT WBT) ; node with two children

;5 A Weight is a Number

Design a program that determines if a weighted binary tree is balanced (i.e.,
there are no nodes in the tree whose 1eft and right children carry unequal

weights). Here are some examples of balanced weighted binary trees to help you
out:

13
(make—-node 13 13)
(make—-node 13 (make—-node 6.5 6.5))

And here are some examples of unbalanced weighted binary trees:

(make—-node 13 6.5)
(make—-node 13 (make—-node 3 10))
(make—-node (make-node 3 10) (make-node 3 10))



[Here is some more space for the previous problem.]



Problem 5 Using the data definition of weighted binary trees from the previous
problem, design a program that consumes a weighted binary tree and produces a
weighted binary tree that is the mirror image of the input. For example:

13 —> 13
(make—-node 10 3) —-——> (make—-node 3 10)
(make-node (make-node 10 3) (make-node 6 8)) —-———>

(make—-node (make-node 8 6) (make-node 3 10))

10



