CSU2500 Exam 2 — Fall 2009

Name:

Student Id (last 4 digits):

Section (morning, honors or afternoon):

e Write down the answers in the
space provided.

e You may use the usual primitives
and expression forms, including
those suggested in hints; for every-

thing else, define it. Problem | Points Jout of

1 5

e You may write ¢ — e in place 3 4

of (check-expect c e) to save 3 5

time writing. You may also 2 B

write the Greek letter A instead of 3 3

lambda, to save writing. 6 15

e Some basic test taking advice: 7 15

Before you start answering any Total 55
problems, read every problem, so Base |50

your brain can be thinking about
the harder problems in background
while you knock off the easy ones.

Good luck!



Problem 1 Suppose we have the two lists

(define a ’(1 2))
(define b ’((3 4) (5 6)))

What do each of the following expressions produce:

1. (append a b)
2. (list a b)
3. (cons a b)

4. (apply append a b)



Problem 2 The set operations we designed in class (union, contains?, efc.)
only work when the set elements are things that can be compared using the equal?

function. Let’s design more general versions, where we can specify our own com-

parison function. Here’s a data definition for a set:

;;; A [Setof X] is a [Listof X]J.
;535 Repetitions not allowed.

Design a function contains? which tells if a set s contains some element
item. Set elements are compared using the third agument to the function, elt=".
For example, if we compare numbers by comparing their absolute values

;53 abs=7 : Number Number -> Boolean

;53 Do the two numbers have the same absolute value?
(define (abs=?7 x y) (= (abs x) (abs y)))
(check-expect (abs=?7 0 0) true)

(check-expect (abs=? 3 3) true)

(check-expect (abs=? 3 -3) true)

(check-expect (abs=?7 -3 3) true)

(check-expect (abs=7?7 -3 -3) true)

(check-expect (abs=? 3 0) false)

then we should get the following behavior:

(contains? (5 1 7) 1 abs=7) ; Should produce true.
(contains? (5 1 7) -1 abs=7) ; Should produce true, too.
(contains? (56 1 7) 8 abs=7) ; Should not produce true.

Write your function using a loop function.



[Here is some more space for the previous problem.]



Problem 3 We’ve lost confidence in Dr. Scheme’s built-in andmap function. Please
design a replacement, named andmap2500. (Since the contract and purpose state-

ment can be taken from the course textbook, you only have to show the code and
tests/examples.)



Problem 4 You are working at the city zoo, writing software to help the zookeep-
ers keep track of the animals. You employ the following data definition to repre-
sent the zoo’s residents:

;5; An ANIMAL is (make-animal String Number)
(define-struct animal (name legs))

(define al (make-animal "Mr. Ed" 4))
(define a2 (make-animal "Flipper" 0))
(define a3 (make-animal "Shelob" 8))

The zookeepers would like a function, by-legs, that takes a number of legs (such
as 4) and a list of animals, and returns all the animals in the input list who have
the given number of legs.

Design by-legs; use a loop function.



Problem 5 Here are two equivalent definitions of a function, fred. (You may
work with whichever one seems clearer to you.) Provide a contract for the func-
tion.

(define-struct pair (a b))

;55 A [Pair X Y] is a (make-pair X Y).

(define (fred test lop)
(cond [(empty? lop) false]
[(test (pair-a (first lop))) truel
[else (fred test (rest lop))]1))

(define (fred test lop)
(and (not (empty? lop))
(or (test (pair-a (first lop)))
(fred test (rest lop)))))



Problem 6 We can make binary trees with strings for leaves, or binary trees with
numbers for leaves, or binary trees with anything we’d like for the leaves, using
the following data definition.

(define-struct node (left right))

;; A [BT X] is one of:
;5 —an X
;; — (make-node [BT X] [BT X1)

For example, we can make a binary tree of strings (i.e., a [BT String]) with

(define btl (make-node (make-node "0lin" "Shivers")
(make-node "David"
(make-node "Van" "Horn"))))

Recall that the foldr operation allows us to process the elements of a list: add
them up, multiply them together, assemble them into a set, efc. Similarly, we can
definine an analogous “loop function” to fold up a binary tree, called fold-tree.
Applying fold-tree with these arguments

(fold-tree + string-length btl)

will replace every occurrence of make-node in bt1 with +, and every leaf s with
(string-length s), computing

(+ (+ (string-length "0lin") (string-length "Shivers"))
(+ (string-length "David")
(+ (string-length "Van") (string-length "Horn"))))

In other words, the first argument to fold-tree says what to do to the node
structures of the tree, while the second argument says what to do to its leaves; in
the example above, we produced the total length of all the strings in the tree.

1. Design fold-tree.
(Hint: You might want to check your contract against the bt1 example
above.)

2. Use fold-tree to define the height function, which produces the height
of a tree. (Assume the height of a leaf is zero.)



[Here is some more space for the previous problem.]



Problem 7 You may have heard of the cons function, which adds an element to
the front of a list. Less well known is the snoc function, which adds an element
to the end of a list:

(snoc 7 ’(1 3 5)) ; produces ’(1 3 5 7)

Define snoc using a loop function.

10



Problem 8 Refer back to problem 6 for the BT data definition.
;55 A NumTree is a [BT Number].

Design the function same-shape? that determines if two NumTrees have the
same shape—that is, we ignore the actual numeric values at the leaves, and pro-
duce true if the first tree has a node structure everywhere the second tree does,
and a leaf everywhere the second tree does.

11



