
CS 2500 Exam 2 HONORS Solutions – Fall 2013

8 POINTSProblem 1 Design the function concat, which consumes a list of lists and ap-
pends them all to produce a single list. Give concat its most general signature
and define it using a loop function. You may not use append or apply.

;; [List-of [List-of X]] -> [List-of X]
;; Concatenate all the lists in lolox into a single list
(define (concat lolox)

(foldr (lambda (lox ans)
(foldr cons ans lox))

empty lolox))

(check-expect (concat (list)) ’())
(check-expect (concat (list ’())) ’())
(check-expect (concat (list ’(1 2) ’())) ’(1 2))
(check-expect (concat (list ’() ’(3 4))) ’(3 4))
(check-expect (concat (list (list 1 2) (list 3) (list 4 5)))

(list 1 2 3 4 5))

1

18 POINTSProblem 2 A sequence represents a series of values. Sequences may be finite or
infinite. In this problem, we’ll work with infinite sequences.

Here are three examples of infinite sequences:

index 0 1 2 3 . . .
positive integers 1 2 3 4 . . .
even natural numbers 0 2 4 6 . . .
lists of ’a ’() ’(a) ’(a a) ’(a a a) . . .

Here is a data definition for representing infinite sequences:

;; A [Sequence X] is a [Natural -> X]
;; interpretation: when the function is applied to an
;; index (a Natural), it gives back the element at
;; that index.

Here is an example of a [Sequence Natural], the even natural numbers:

(define even-nats (lambda (i) (* 2 i)))

Here is a convenient function for producing a list with the first n elements of
an infinite sequence:

;; seq->listn : [Sequence X] Natural -> [List X]
;; Build a list with the first n elements of the
;; sequence s
(define (seq->listn s n)

(map s (build-list n (lambda (x) x))))

For example,

> (seq->listn even-nats 10)
(list 0 2 4 6 8 10 12 14 16 18)

You may use even-nats and seq->listn for tests, but they should not
be used otherwise.

2

(a) (8 pts) Design the following functions:

• seq-head, which consumes a sequence s and returns its 0th element.

• seq-rest, which consumes a sequence s and returns a sequence with
all but the 0th element of s.

;; seq-head : [Sequence X] -> X
;; Get the 0th element in the sequence
(define (seq-head s)
(s 0))

(check-expect (seq-head even-nats) 0)

;; seq-rest : [Sequence X] -> [Sequence X]
;; Produce a sequence with all but the 0th element of s
(define (seq-rest s)
(lambda (i) (s (add1 i))))

(check-expect (seq->listn (seq-rest even-nats) 5)
(list 2 4 6 8 10))

3

(b) (10 pts) A series for a sequence s gives the sums of the elements in s. More
precisely, adding the 0th through ith elements of an infinite sequence s forms
the ith element of another infinite sequence, called a series.

For example, the series for the sequence of positive integers 1, 2, 3, 4, ...
is: 1, 3, 6, 10,

Design the function seq->series, which consumes a [Sequence X],
and a function for adding Xs (with signature [X X -> X]), and produces a
series for the given sequence.

;; seq->series : [Sequence X] [X X -> X] -> [Sequence X]
;; Given a sequence s of Xs, and a function addx that can
;; add two Xs, produce the series for sequence s.
(define (seq->series s addx)
(lambda (i)
(local ((define (sumx i)

(cond [(zero? i) (s i)]
[else (addx (s i)

(sumx (sub1 i)))])))
(sumx i))))

(check-expect (seq->listn (seq->series even-nats +) 5)
(list 0 2 6 12 20))

Alternative solution:

(define (seq->series s addx)
(lambda (i)
(cond [(zero? i) (s i)]

[else (addx (s i)
((seq->series s addx) (sub1 i)))])))

4

14 POINTSProblem 3 Consider the following data definition for finite sequences:

;; A [Maybe X] is one of:
;; - ’undef
;; - X

;; A [FiniteSeq X] is a [Sequence [Maybe X]]
;; Constraint: there exists some index i>0 such that
;; - no elements at indices [0,i) equal ’undef
;; - all elements at indices >= i equal ’undef

Informally, the above data definition allows us to represent a finite sequence 1, 2,
3 as the infinite sequence 1, 2, 3, ’undef, ’undef, ’undef, ...

(a) (2 pts) Define even-nats-4to8, an instance of [FiniteSeq Natural]
that represents the sequence of even natural numbers in the range [4,8]—that
is, the finite sequence 4, 6, 8.

Either of the following is okay.

(define even-nats-4to8
(lambda (i) (cond

[(= i 0) 4]
[(= i 1) 6]
[(= i 2) 8]
[else ’undef])))

(define even-nats-4to8
(lambda (i) (if (< i 3)

(+ (* 2 i) 4)
’undef)))

5

(b) (12 pts) Design the function fs-length, which consumes a finite sequence
and two natural numbers lo and hi and produces the length of the finite
sequence. Assume that lo < hi and that there exists an index i in the range
[lo,hi) such that the element at index i+1 is ’undef but the element at
index i is not.

For example, for the finite sequence even-nats-4to8 that you defined in
part (a):

> (fs-length even-nats-4to8 0 100)
3

To get credit for this problem, you will need to use an efficient generative
recursion design.

6

;; fs-length : [FiniteSeq X] Natural Natural -> Natural
;; Compute the length of the finite sequence fs, assuming
;; that the length is a number in the range (lo,hi].
;; Assume: lo < hi
;; Assume: there exist an index i in [lo,hi) such that
;; element at index i+1 is ’undef while the element at
;; index i is not.

;; Generative recursion
;; HOW: Determine midpoint between lo and hi. If element
;; at midpoint is ’undef then length between lo and mid;
;; otherwise length between mid and hi.
;;
;; TERMINATES for all possible finite sequences because
;; the recursive calls are guaranteed to receive smaller
;; sequences than the given s.

(define (fs-length s lo hi)
(cond [(= (add1 lo) hi) hi]

[else
(local ((define mid (quotient (+ lo hi) 2))

(define s@mid (s mid)))
(cond [(and (symbol? s@mid) (symbol=? s@mid ’undef))

(fs-length s lo mid)]
[else
(fs-length s mid hi)]))]))

(check-expect (fs-length even-nats-4to8 2 3) 3)
(check-expect (fs-length even-nats-4to8 0 1000000) 3)

7

