Problem 1 Design the function `concat`, which consumes a list of lists and appends them all to produce a single list. Give `concat` its most general signature and define it using a loop function. You may not use `append` or `apply`.

;; [List-of [List-of X]] -> [List-of X]
;; Concatenate all the lists in lolox into a single list
(define (concat lolox)
 (foldr (lambda (lox ans)
 (foldr cons ans lox))
 empty lolox))

(check-expect (concat (list)) '())
(check-expect (concat (list '())) '())
(check-expect (concat (list '(1 2) '())) '(1 2))
(check-expect (concat (list () '(3 4))) '(3 4))
(check-expect (concat (list (list 1 2) (list 3) (list 4 5)))
 (list 1 2 3 4 5))
Problem 2 A *sequence* represents a series of values. Sequences may be finite or infinite. In this problem, we’ll work with infinite sequences.

Here are three examples of infinite sequences:

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive integers</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>even natural numbers</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>...</td>
</tr>
<tr>
<td>lists of ‘a’</td>
<td>‘()’</td>
<td>‘(a)’</td>
<td>‘(a a)’</td>
<td>‘(a a a)’</td>
<td>...</td>
</tr>
</tbody>
</table>

Here is a data definition for representing infinite sequences:

```scheme
;; A [Sequence X] is a [Natural -> X]
;; interpretation: when the function is applied to an
;; index (a Natural), it gives back the element at
;; that index.

Here is an example of a [Sequence Natural], the even natural numbers:

```
(define even-nats (lambda (i) (* 2 i)))
```

Here is a convenient function for producing a list with the first \( n \) elements of an infinite sequence:

```scheme
;; seq->listn : [Sequence X] Natural -> [List X]
;; Build a list with the first \(n \) elements of the
;; sequence \(s \)
(define (seq->listn s n)
 (map s (build-list n (lambda (x) x))))
```

For example,

```
> (seq->listn even-nats 10)
(list 0 2 4 6 8 10 12 14 16 18)
```

You may use `even-nats` and `seq->listn` for tests, but they should not be used otherwise.
(a) (8 pts) Design the following functions:

- seq-head, which consumes a sequence $s$ and returns its 0th element.
- seq-rest, which consumes a sequence $s$ and returns a sequence with all but the 0th element of $s$.

;; seq-head : [Sequence X] -> X
;; Get the 0th element in the sequence
(define (seq-head s)
  (s 0))

(check-expect (seq-head even-nats) 0)

;; seq-rest : [Sequence X] -> [Sequence X]
;; Produce a sequence with all but the 0th element of $s$
(define (seq-rest s)
  (lambda (i) (s (add1 i))))

(check-expect (seq->listn (seq-rest even-nats) 5)
  (list 2 4 6 8 10))
(b) (10 pts) A series for a sequence \( s \) gives the sums of the elements in \( s \). More precisely, adding the 0th through \( i \)th elements of an infinite sequence \( s \) forms the \( i \)th element of another infinite sequence, called a series.

For example, the series for the sequence of positive integers 1, 2, 3, 4, ... is: 1, 3, 6, 10, ....

Design the function seq->series, which consumes a [Sequence X], and a function for adding Xs (with signature [X X -> X]), and produces a series for the given sequence.

```scheme
;; seq->series : [Sequence X] [X X -> X] -> [Sequence X]
;; Given a sequence s of Xs, and a function addx that can
;; add two Xs, produce the series for sequence s.
(define (seq->series s addx)
 (lambda (i)
 (local ((define (sumx i)
 (cond [(zero? i) (s i)]
 [else (addx (s i)
 (sumx (sub1 i)))])))
 (sumx i)))))

(check-expect (seq->listn (seq->series even-nats +) 5)
 (list 0 2 6 12 20))

Alternative solution:

(define (seq->series s addx)
 (lambda (i)
 (cond [(zero? i) (s i)]
 [else (addx (s i)
 ((seq->series s addx) (sub1 i)))])))
```


Problem 3  Consider the following data definition for finite sequences:

```scheme
;; A [Maybe X] is one of:
;; - 'undef
;; - X

;; A [FiniteSeq X] is a [Sequence [Maybe X]]
;; Constraint: there exists some index i>0 such that
;; - no elements at indices [0,i) equal 'undef
;; - all elements at indices >= i equal 'undef
```

Informally, the above data definition allows us to represent a finite sequence 1, 2, 3 as the infinite sequence 1, 2, 3, 'undef, 'undef, 'undef, ...

(a) (2 pts) Define `even-nats-4to8`, an instance of `[FiniteSeq Natural]` that represents the sequence of even natural numbers in the range [4,8]—that is, the finite sequence 4, 6, 8.

Either of the following is okay.

```scheme
(define even-nats-4to8
 (lambda (i) (cond
 [(= i 0) 4]
 [(= i 1) 6]
 [(= i 2) 8]
 [else 'undef])))

(define even-nats-4to8
 (lambda (i) (if (< i 3)
 (+ (* 2 i) 4)
 'undef)))
```
(b) (12 pts) Design the function \( \text{fs-length} \), which consumes a finite sequence and two natural numbers \( \text{lo} \) and \( \text{hi} \) and produces the length of the finite sequence. Assume that \( \text{lo} < \text{hi} \) and that there exists an index \( i \) in the range \([\text{lo}, \text{hi})\) such that the element at index \( i+1 \) is \'undef\) but the element at index \( i \) is not.

For example, for the finite sequence \( \text{even-nats-4to8} \) that you defined in part (a):

\[
\begin{align*}
> & \ (\text{fs-length even-nats-4to8} \ 0 \ 100) \\
& 3
\end{align*}
\]

To get credit for this problem, you will need to use an efficient generative recursion design.
;;; fs-length : [FiniteSeq X] Natural Natural -> Natural
;;; Compute the length of the finite sequence fs, assuming
;;; that the length is a number in the range (lo,hi].
;;; Assume: lo < hi
;;; Assume: there exist an index i in [lo,hi) such that
;;; element at index i+1 is 'undef while the element at
;;; index i is not.

;;; Generative recursion
;;; HOW: Determine midpoint between lo and hi. If element
;;; at midpoint is 'undef then length between lo and mid;
;;; otherwise length between mid and hi.
;;; TERMINATES for all possible finite sequences because
;;; the recursive calls are guaranteed to receive smaller
;;; sequences than the given s.

(define (fs-length s lo hi)
  (cond [(= (add1 lo) hi) hi]
        [else
          (local ((define mid (quotient (+ lo hi) 2))
                  (define s@mid (s mid)))
            (cond [(and (symbol? s@mid) (symbol=? s@mid 'undef))
                   (fs-length s lo mid)]
                  [else
                   (fs-length s mid hi)]))]
  (check-expect (fs-length even-nats-4to8 2 3) 3)
  (check-expect (fs-length even-nats-4to8 0 1000000) 3))