
56 COMMUNICATIONS OF THE ACM | DECEMBER 2016 | VOL. 59 | NO. 12

practice

O N E O F T H E long-standing ironies of user-friendly
JavaScript frontends is that building them typically
involved trudging through the DOM (Document
Object Model), hardly known for its friendliness
to developers. But now developers have a way to
avoid directly interacting with the DOM, thanks to
Facebook’s decision to open source its React library
for the construction of user interface components.

React essentially manages to abstract away the
DOM, thus simplifying the programming model while
also—in a somewhat surprising turn—improving

performance. The key to both advances
is that components built from stan-
dard JavaScript objects serve as the fun-
damental building blocks for React’s
internal framework, thus allowing for
greatly simplified composability. Once
developers manage to get comfortable
with building front ends in this way,
they typically find they can more readi-
ly see what is going on while also enjoy-
ing greater flexibility in terms of how
they structure and display data.

All of which caused us to wonder
about what led to the creation of React in
the first place and what some of its most
important guiding principles were. For-
tunately for us, Pete Hunt, who at the
time was an engineering manager at
Instagram as well as one of the more
prominent members of Facebook’s
React core team, is willing to shed some
light on React’s beginnings. Hunt has
since gone on to cofound Smyte, a San
Francisco startup focused on security
for marketplaces and social networks.

Also helping to tell the story is Paul
O’Shannessy, one of the first engi-
neers at Facebook to be dedicated to
React full time. He came to that role
from Mozilla, where he had previously
worked on the Firefox front end.

The job of asking the probing ques-
tions that drive the discussion forward
falls to Dave Smith and Terry Coatta.
Smith is an engineering director at
HireVue, a Salt Lake City company fo-
cused on team-building software, where
he has had an opportunity to make ex-
tensive use of both Angular and React.
Coatta is the CTO of Marine Learning
Systems, where he is building a learn-
ing management system targeted at the
maritime industry. He is also a member
of the acmqueue editorial board.

DAVE SMITH: What is it exactly that led
to the creation of React?

PETE HUNT: Of all the Web apps at
Facebook, one of the most complex is
what we use to create ads and manage
ad accounts. One of the biggest prob-
lems is keeping the UI (user interface)
in sync with both the business logic
and the state of the application. Tradi-

React:
Facebook’s
Functional
Turn on
Writing
JavaScript

DOI:10.1145/2980991

 Article development led by
 queue.acm.org

A discussion with Pete Hunt, Paul O’Shannessy,
Dave Smith, and Terry Coatta

http://dx.doi.org/10.1145/2980991

DECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 57

I
M

A
G

E
 B

Y
 A

L
I

C
I

A
 K

U
B

I
S

TA
/A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
B

A
S

E
D

 O
N

 F
A

C
E

B
O

O
K

 R
E

A
C

T
 L

O
G

O

tionally, we’ve done that by manually
manipulating the DOM using a cen-
tralized event bus, whether by putting
events into the queue or by having lis-
teners for the event and then letting
them do their thing.

That proved to be really cumber-
some, so a few years ago we imple-
mented what we then considered to
be a state-of-the-art, DOM-monitoring
system called Bolt. It was kind of like
Backbone with observables, where you
would register for computed proper-
ties that would eventually get flushed
to the DOM. But then we found that
also was pretty hard to manage since
you could never be sure when your
properties were going to be updated—
meaning that if you changed a value,
you couldn’t be sure whether it was
going to cause a single update, cascad-
ing updates, or no updates at all. Fig-
uring out when those updates might
actually occur also proved to be a really
hard problem.

The whole idea behind React ini-
tially was just to find some way to wire
up those change handlers such that en-
gineers could actually wrap their heads
around them. That hadn’t been the
case with Bolt, and as a consequence
we ended up with lots of bugs nobody
could solve. So the engineers who start-
ed working on a way to remedy that
ended up going wild for a couple of
months and came out with this weird-
looking thing nobody thought had
any chance whatsoever of working. If
you’re even vaguely familiar with React,
you already know that whenever there’s
a change in your underlying data mod-
el, it essentially re-renders the whole
application and then does a diff to see
what actually changed in the rendered
result. Then it’s only those parts of the
page that get updated.

Some people here had some per-
formance concerns about that, so
an early version of React ended up
being run through a serious gaunt-
let of engineering tests where it got
benchmarked against pretty much
everything that could be thrown at it.
As part of that, of course, we looked

at how this new programming model
fared against both the Bolt model
and our old event model. React ended
up really surprising a lot of people—
enough so, in fact, that it was shipped
almost immediately as part of our
“liking and commenting” interface
on News Feed. That was the first big
test for React, and that came a few
years ago.

Then we tried it out on Instagram.
com, which is where I entered the pic-
ture since I was the person at Instagram
responsible for building a few things
using React. We were really happy with
it since it proved to be capable of run-
ning our whole page instead of just one
small widget here or there. That gave us
a pretty good indication it was actually
going to work. Since then, it has essen-
tially become the de facto way people
write JavaScript at Facebook.

TERRY COATTA: I’ve heard React takes
a different approach to data binding.
What sets React apart there?

PH: The way I think about data bind-
ing in a Web context is that you’ve got
some sort of observable data structure
down to the DOM nodes. The challenge
is that when you’re implementing
some sort of observable system, you’re
obliged to observe this data structure
wherever your application touches the
data model.

For example, if you use something
like Ember, everything you do is go-
ing to use getters and setters, meaning
you’re going to need to remain aware of
this observable abstraction throughout
the entire application. So if you want to
compute a value, you’re not going to
use a function only; you’re going to use
a computed property number, which is
a domain-specific thing for Ember.

Angular, I think, does a much better
job of this since it uses dirty checking,
which means you can actually take ad-
vantage of regular JavaScript objects.
The problem with Angular, though, is
that it makes it difficult to compose
your application. That’s because, in-
stead of using regular functions or ob-
jects to build up abstractions (as you
would do with JavaScript), you have to

58 COMMUNICATIONS OF THE ACM | DECEMBER 2016 | VOL. 59 | NO. 12

practice

er data you tell it to accept. That basi-
cally allows for any structure. It could
be something like Backbone. It could
be plain JSON. It could be whatever
you want. Then your code will just go
ahead and do whatever it’s supposed
to do, backed by the full power of Ja-
vaScript.

At the end of that, however, it will
return a value, which we call a vir-
tual DOM data structure. That’s basi-
cally just a fancy handle for JavaScript
objects that tell you which kinds of
elements they are and what their at-
tributes are. So if you think of data
binding as a way to keep your UI up to
date with your underlying model, you
can accomplish that with React just by
signaling, “Hey, something in my data
model may have just changed.” That
will prompt React to call the black-box
user code, which in turn will emit a
new virtual DOM representation. Then,
having kept the previous representa-
tion, React will look at the new version
and the old version and do a diff of the
two. Based on that, it might conclude,
“Oh, we need to build a className at-
tribute at this node.”

The advantage of this approach is
that it involves no actual tracking of
your underlying data model. You don’t
have to pay a data binding cost up
front. Most systems that require you to
track changes within the data model
and then keep your UI up to date with
that are faced with a data binding cost
driven by the size of the underlying
data model. React, on the other hand,
pays that cost relative only to what ac-
tually gets rendered.

TC: If I understand you correctly,
you’re saying React is in some sense
a highly functional environment that
takes some arbitrary input, renders an
output, and then computes the differ-
ence between the two to determine what
it ought to be displaying on the screen.

PH: Exactly. I like to describe this as
“referentially transparent UI.” Which
is to say your user interface is generally
a pure function of some set of inputs,
and it emits the same kind of virtual
DOM structure every single time for
some given data input.

TC: So the data bindings that have
caused us grief in Angular run in the
other direction here in the sense that
they reflect the value of DOM elements
that are bound to underlying model ob-

pass everything through a scope in or-
der to observe those changes. Then you
end up with this data binding that cou-
ples different parts of your program
in ways that aren’t necessarily all that
clear or obvious.

For example, let’s say we’re look-
ing to sort a list of your top friends—
which is the kind of thing we do all of
the time here. In order for us to do that
with an observable system, we would
have to set up an observer for every
one of the thousand friends you’ve
listed, even if all we’re really looking
to do is to render the top 10. So, as you
can imagine, it’s going to take a good
chunk of memory to maintain that
whole representation.

Obviously, there are ways to get
around that, but people typically just
break out of the data binding abstrac-
tion altogether at that point so they
can proceed manually. Now, I generally
hate to say something isn’t going to
scale, but it’s fairly obvious this is go-
ing to present some scaling issues. It’s
clear that the bigger your application
gets, the more you’re going to run into
this sort of edge case.

TC: I agree completely about the An-
gular situation since I also find com-
position there to be tricky for just the
reason you mentioned—that is, you
end up having different parts of your
application essentially coupled silently
via two-way data binding. But I see that
React also has data binding, so I’m
curious about how you’ve managed to
provide for better composability de-
spite that coupling.

PH: Let me zoom out a little here to
observe that, at a very high level, React
essentially treats your user code as a
black box while also taking in whatev-

PETE HUNT

At a very high level,
React essentially
treats your user
code as a black box
while also taking in
whatever data you
tell it to accept.
That basically
allows for any
structure.

A
L

L
 P

H
O

T
O

 T
R

E
A

T
M

E
N

T
S

 B
Y

 A
L

I
C

I
A

 K
U

B
I

S
TA

/A
N

D
R

I
J

 B
O

R
Y

S
 A

S
S

O
C

I
A

T
E

S

DECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 59

practice

jects or scope variables. Any changes
there effectively become visible at
multiple locations throughout your
code at much the same time, meaning
the composability issues surface since
different locations in your code are
made aware almost simultaneously
of changes that propagate backwards
from the UI.

PH: Another problem is that you
might have multiple bindings to the
same data source. So then which piece
of code is going to be treated as the
authoritative source for determining
what the value ought to be?

This is why, with React, we empha-
size one-way data flow. As I said earlier,
data in our model first goes into this
application black box, which in turn
emits a virtual DOM representation.
Then we close the loop with simple
browser events. We’ll capture a KeyUp
event and command, “Update the
data model in this place based on that
KeyUp event.” We’ve also architected
the system in such a way as to encour-
age you to keep the least possible mu-
table state in your application. In fact,
because React is such a functional
system, rather than computing a value
and then storing it somewhere, we just
recompute the value on demand with
each new render.

The problem is that people some-
times want to have a big form that
includes something like 20,000 fields
that then bind to some simple keys
and data objects. The good news is
that it’s actually very easy for us to
build an abstraction on top of a sim-
ple event loop that basically captures
all the events that might possibly up-
date the value of this field, and then
sets up an automatic handler to pass
the value down from the data model
into the form field. The form and the
data model essentially get updated at
the same time. This means you end
up with a system that looks a lot like
data binding, but if you were to peel it
back, you would see that it’s actually
only simple syntactic sugar on top of
an event loop.

TC: One of the things I’ve observed
about React is that it seems to be what
people would call fairly opinionated.
That is, there’s a certain way of doing
things with React. This is in contrast to
Angular, which I’d say is not opinionat-
ed since it generally lets you do things

in several different ways. Do you think
that is an accurate portrayal?

PH: It depends. There are certain
places where React is very opinionated
and others where it’s quite unopinion-
ated. For example, React is unopinion-
ated in terms of how you express your
view logic since it treats your UI as a
black box and looks only at the output.
But it’s opinionated in the sense that
we really encourage idempotent func-
tions, a minimal set of mutable state,
and very clear state transitions.

I’ve built a lot of stuff with React,
and I have a team that’s run a lot of
stuff with it. From all that experience,
I can tell you that whenever you run
into a bug in a React application, nine
times out of 10 you’re going to find it’s
because you have too much state in
there. We try to push as much mutable
state as possible out of applications to
get to what I like to call a fully normal-
ized application state. In that respect,
yes, we’re very opinionated, but that’s
just because a lot of React abstractions
don’t work as well if you have too much
mutable state.

I think Angular is actually less
opinionated in that regard, but it cer-
tainly has opinions about how you
need to compose your application.
It’s very much a model-view-present-
er type of architecture. If you want to
create reasonable widgets, you’re go-
ing to have to use directives, which
are very opinionated.

TC: Another thing I noticed right
away about React is that it’s very com-
ponent-oriented. What was the reason
for going in that direction?

PH: We actually think of a compo-
nent as being quite similar to a Ja-
vaScript function. In fact, the only

PAUL O’SHANNESSY

We end up writing
good code pretty
much across the
board since there
are fewer people
going off into
crazy land writing
CSS. Basically,
this just gives us a
way at the top level
to control all that.

60 COMMUNICATIONS OF THE ACM | DECEMBER 2016 | VOL. 59 | NO. 12

practice

Sheets). We strongly discourage the
average product engineer from writ-
ing much CSS. Instead, we suggest
that they take these components off
the shelf, drop them into whatever it is
they’re doing, and then maybe tweak
the layout a little. That has worked re-
ally well for us.

PO: That way we end up writing good
code pretty much across the board
since there are fewer people going off
into crazy land writing CSS. Basically,
this just gives us a way at the top level
to control all that.

For all the ways in which React sim-
plifies the creation of user interfaces, it
also poses a learning curve for develop-
ers new to the environment. In particu-
lar, those who have worked primarily
on monolithic systems in the past may
find it challenging to adopt more of a
component-oriented mindset. They
will also soon find that React is opin-
ionated about how state should be
handled, which can lead to some hard
lessons and harsh reminders whenever
people stray.

TC: There’s a lot about React that’s
appealing, but where are the sharp
edges that people ought to look out for
before diving in? What kinds of mis-
takes are likely to make their lives more
painful?

PH: Most of the pain points are al-
most certain to be about state. State
is the hardest part of building appli-
cations anyway, and React just makes
that super explicit. If you don’t think
about state in the right way, React is go-
ing to highlight those bugs for you very
early in the process.

TC: Give me a concrete example of
how people might think about state in
the wrong way.

PH: OK, I’m looking at a site powered
by React that was launched earlier to-
day. It looks like the page has four main
components: side navigation, a search-
results list, a search bar, and a content
area containing both the search bar
and the search-results list.

When you type in the search bar, it
filters the results to be shown in the
results grid. If I were to ask you where
that filter state should live, there’s a
good chance you would think, “Well,
the search-results list is what’s do-
ing the filtering, so the state probably

difference between a function and a
component is that components need
to be aware of a couple of lifecycle
hooks about themselves, since it’s im-
portant they know when they get added
to or removed from the DOM as well
as when they’re going to be able to get
their own DOM node. The component
is a fundamental building block on top
of which we’ve built our own internal
framework. Now a lot of other people
out in the open source world are also
building on top of it.

We emphasize it because it’s com-
posable, which is the one thing that
most separates React components
from Angular directives and Web com-
ponents like partials and templates.
This focus on composability—which I
see as the ability to build nested com-
ponents on multiple layers—not only
makes it easier to see what’s actually
going on, but also gives you flexibility
in terms of how to structure and dis-
play data, while also letting you over-
ride behaviors and pass data around in
a more scalable and sensible way.

PAUL O’SHANNESSY: This also has a
lot to do with how we build applica-
tions on the server, where we have a
core library of components that any
product team can use as the basis for
building their own components. This
idea of using components is really
just a natural extension of the core
way we build things in PHP and XHP,
with the idea simply being to com-
pose larger and larger components
out of smaller components.

PH: Those product teams tend to be
made up of generalists who work in all
kinds of different languages, which is
to say they’re not necessarily experts
in JavaScript or CSS (Cascading Style

DAVE SMITH

When I started out
with React,
one of the hardest
things for me
to grasp was
this idea that
everything is
a component ...
I found myself
getting lost in
relationships
between
components.

DECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 61

practice

ought to live there.” That’s what intui-
tively makes sense.

But actually the state should live
in the common ancestor between the
search box and the search-results list,
sort of like a view controller. That’s be-
cause the search box has the state of the
search filter as well as the search results.
Still, the search-results list needs access
to that data as well. React will quickly let
you know, “Hey, you actually need to put
that in a common ancestor.”

PO: If you were building that same
UI with Angular and used a directive
for the search box and then another
directive for the search results, you
would be encouraged in that case as
well to put your state in a common
ancestor. This would mean having
a controller hold the scope variable,
since that’s where you’ll find the
search text to which both of those
directives would then bind. I think
you’re actually looking at a pretty
similar paradigm there.

PH: Good catch. But I think there’s
still a distinction to be made in that
React components are building
blocks that can be used to construct
a number of conceptually different
components or objects. You could
use a React component to implement
a view controller or some pure view-
only thing—whereas with Angular,
the controller is distinct from a direc-
tive, which in turn is distinct from the
“service,” which is how Angular de-
scribes those things you shove all the
other logic into. Sometimes it makes
sense just to make all those things Re-
act components.

DS: In this case, if you were building
the UI with React, what would be the
common ancestor? A React component?

PH: Yes. I would use React compo-
nents for everything.

DS: When I was starting out with Re-
act, I think one of the hardest things
for me to grasp was this idea that ev-
erything is a component. Even when I
walked through an example on the Re-
act website that included a comment
box and a comment list, I was surprised
to learn that even those were treated as
components. I also found myself get-
ting lost in the relationships between
those components. I wonder if you find
that to be a common problem for other
new React developers.

PO: For people who are used to build-

ing more monolithic things, that often
proves to be a problem. At Facebook,
where we’ve always coded in PHP,
we’re accustomed to building micro-
components and then composing
them, so that hasn’t proved to be such
a huge problem here. Anyway, what I
think we’ve always encouraged is that,
whenever you’re thinking about reus-
ing something, break it down into its
smallest elements. That’s why, in the
example you cited, you would want to
separate the comment box from the
comment list, since you can reuse both
of those things in other parts of your
application. We really do encourage
people to think that way.

PH: We also encourage that you
make stuff stateless. Basically, I like
to think people are going to feel re-
ally bad about using state. I know
there are times when it’s a necessary
evil, but you should still feel dirty
whenever you have to resort to doing
that. That’s because then you’ll start
thinking, “OK, so I really want to put
this search state in only one place in
my app.” Generally, that means you’ll
find the right spot for it since you’re
not going to want to deal with having
to synchronize states throughout your
application. And you won’t have to if it
lives in only one canonical place.

DS: What other major differentiators
set React apart from other JavaScript
frameworks?

PH: We haven’t yet talked about the
idea that React, as a general way of
expressing user interface or view hier-
archies, treats the DOM as just one of
many potential rendering back ends.
It also renders to Canvas and SVG
(Scalable Vector Graphics), for exam-
ple. Among other things, this means

TERRY COATTA

React is in some
sense a highly
functional
environment
that takes some
arbitrary input,
renders an output,
and then computes
the difference
between the two
to determine what
it ought to be
displaying on
the screen.

62 COMMUNICATIONS OF THE ACM | DECEMBER 2016 | VOL. 59 | NO. 12

practice

I should also point out that React
clearly is not purely functional. We
also have some very imperative steps
and hooks that let you break out of the
functional paradigm. But in an ideal
world, you don’t have any other sources
of data, so everything is at the top and
just flows through—meaning every-
thing ends up being a very pure output
of these render functions.

DS: A bit earlier, you used the term
“referential transparency” to describe
the way React renders UI. Can you ex-
plain what that means?

PH: Basically, React components
have props, parameters that can be
used to instantiate those components.
You might think of them as function
parameters. In order to say, “I want
to create a type-ahead with these op-
tions,” you can just pass in the options
list as a prop.

The idea is that if you render a com-
ponent using the same props and
states, you’ll always render the same
user interface. This can get a little bit
tricky, though. For example, you can’t
read from the random-number genera-
tor because that would change the out-
put. Still, if you handle this as a pure
function of props and state and make
sure you don’t read from anything else,
you can probably see that this is going to
make testing really fast and easy. You ba-
sically say, “I just want to make sure my
component looks this certain way when
it gets this data.” Then, since you don’t
have to take the Web-driver approach
of clicking on every single button to get
the app into the right state before dou-
ble-checking to make sure you’ve got ev-
erything right... well, it becomes pretty
obvious how this makes testing a whole
lot easier—which, of course, makes de-
bugging easier as well.

 Related articles
 on queue.acm.org

Dismantling the Barriers to Entry
Rich Harris
http://queue.acm.org/detail.cfm?id=2790378

The Flame Graph
Brendan Gregg
http://queue.acm.org/detail.cfm?id=2927301

Componentizing the Web
Taylor Savage
http://queue.acm.org/detail.cfm?id=2844732

Copyright held by owners/authors.
Publication rights licensed to ACM. $15.00

React can render on the server without
booting up like a full-browser DOM. It
doesn’t work like it’s just some other
domain-specific language on top of
the DOM. Basically, React pretty much
hates the DOM and wants to live out-
side a browser as much as possible. I
definitely see that as a huge differen-
tiator between React and the other Ja-
vaScript frameworks.

PO: We’ve basically seen the same
thing happen with WebGL or any other
generic rendering platform. It just goes
back to the question of immediate vs.
retained mode, where you soon discov-
er that as long as you can output some-
thing, it really doesn’t matter. You just
blow away whatever was there before.

DS: I’m also curious about the func-
tional programming aspects of React.
In particular, I’m interested in know-
ing more about which specific func-
tional principles you’ve adopted.

PH: The truth is, we’re actually a
bunch of functional programming
geeks. In part, that’s because if you
truly subscribe to the Church of Func-
tional Programming, you can get a lot
of performance benefits for free. For
example, if your data model is serializ-
able and you treat your render method
as a pure function of your properties,
you get server-side rendering and
client-side rendering for free since
both of those end up being pure func-
tions of the same data on both sides of
the wire. That way, you can guarantee
that when your application initializes,
it will get into the same state on both
sides automatically. That can be re-
ally important if you have a very state-
ful kind of object-oriented mutative
system, since then it becomes much,
much harder to synchronize those two
states otherwise.

The other advantage has to do with
optimizing your apps. We have a hook
called shouldComponentUpdate,
where you can replace React’s diff al-
gorithm with a faster custom one. Also,
many functional programmers really
like to use immutable data structures
since that lets them quickly figure out
whether something has changed—just
another example of how you can get
free performance benefits this way.

TC: In the immutable data structures
vein, one really powerful library I’ve
heard about is David Nolen’s Om.

PH: That’s a very cool piece of tech-

nology. It’s for ClojureScript, the ver-
sion of Clojure that compiles to Java-
Script. What makes Clojure really cool
is its persistent data structures, which
basically are really fast and easy-to-
use immutable data structures.

What that means for us is that if you
have a post on Facebook and some-
body likes it, that gives you a new like
event that should be reflected on the
like count appearing on that post. Nor-
mally, you would just mutate that, but
then you would have no way of detect-
ing whether the change actually hap-
pened or not, which means you would
basically need to re-render the whole
thing and then diff it. From that diff,
you would learn that only that particu-
lar part of the UI actually changed. But
if you were using immutable persis-
tent data structures, instead of mutat-
ing the like count, you could just copy
the story object and, within that copy,
update the like count.

Normally, that would be a very ex-
pensive way to go, but in Clojure the
copy isn’t expensive since it has a way
of doing it where it shares the point-
ers with all the other parts of that
data structure and then allocates new
objects only for whatever actually
changed. That’s a good example of an
abstraction that’s quite complicated
under the hood and yet manages to
present a very, very simple user inter-
face—something that’s extremely easy
for people to reason about.

TC: I assume that could also help with
undo/redo capabilities.

PH: Right. When everything is im-
mutable, everything gets simpler. Om
undos and redos basically just keep
around pointers to the previous state
and the next state. When you want to
undo, you just pass the old object into
React, and it will update the whole UI
accordingly.

TC: The whole thing?
PO: When your state is serialized into

one object at the top level, all you do is
pass that through and re-render it—
and you’re done. With some of the Om
examples I’ve seen, it just snapshots
the state at every point and then gives
you a UI that indicates how many states
you have. Then you can just drag back
and forth on that. Or you could start do-
ing some fancier things with the help
of trees to produce a really advanced
undo system.

