
Student Name:

CS 2500/Accelerated Exam 2—Fall 2017

Matthias Felleisen

November 15, 2017

• The exam is a one-hour exam.

• We will not answer any questions during the exam. If you believe

a problem statement is ambiguous, write down your thoughts and

choose any non-trivial interpretation.

• Write down the answers in the space provided, including the back of

the given spaces. If you need more space, ask for another blank exam.

• You may use the paper copy of the book or your notes.

• You may not use any electronic gadgets (for example, watches, google

glasses, phones, tablets, laptops). Any use of an electronic gadget will

lead to immediate expulsion from the exam and class.

• You may use all the definitions, expressions, and functions found

ISL+. Define everything else.

• Unless a problem requests a solution that does not use the abstrac-

tions of ISL+—see figures 1 and 2 on the back of this page—you may

use these abstractions. Similarly, unless a problem demands a solu-

tion that uses the abstractions of ISL+, you do not have to use these

abstractions.

Problem Max. Points

1 10

2 12

3 21

4 9

Total / 52



; [X] N [N -> X] -> [Listof X]

; constructs a list by applying f to 0, 1, ..., (sub1

n)

; (build-list n f) == (list (f 0) ... (f (- n 1)))

(define (build-list n f) ...)

; [X] [X -> Boolean] [Listof X] -> [Listof X]

; produces a list from those items on lx for which p

holds

(define (filter p lx) ...)

; [X] [Listof X] [X X -> Boolean] -> [Listof X]

; produces a version of lx that is sorted according to

cmp

(define (sort lx cmp) ...)

; [X Y] [X -> Y] [Listof X] -> [Listof Y]

; constructs a list by applying f to each item on lx

; (map f (list x-1 ... x-n)) == (list (f x-1) ... (f

x-n))

(define (map f lx) ...)

; [X] [X -> Boolean] [Listof X] -> Boolean

; determines whether p holds for every item on lx

; (andmap p (list x-1 ... x-n)) == (and (p x-1) ... (p

x-n))

(define (andmap p lx) ...)

; [X] [X -> Boolean] [Listof X] -> Boolean

; determines whether p holds for at least one item on

lx

; (ormap p (list x-1 ... x-n)) == (or (p x-1) ... (p

x-n))

(define (ormap p lx) ...)

Figure 1: ISL’s abstract functions for list processing (1)

2



; [X Y] [X Y -> Y] Y [Listof X] -> Y

; (foldr f b (cons x-1 ... (cons x-n '()) ..)) ==

; (f x-1 ... (f x-n b))

(define (foldr f b lx) ...)

(foldr + 0 '(1 2 3 4 5))

== (+ 1 (+ 2 (+ 3 (+ 4 (+ 5 0)))))

== (+ 1 (+ 2 (+ 3 (+ 4 5))))

== (+ 1 (+ 2 (+ 3 9)))

== (+ 1 (+ 2 12))

== (+ 1 14)

; [X Y] [X Y -> Y] Y [Listof X] -> Y

; (foldr f b (cons x-1 ... (cons x-n '()) ..)) ==

; (f x-n ... (f x-1 b))

(define (foldl f b lx) ...)

(foldl + 0 '(1 2 3 4 5))

== (+ 5 (+ 4 (+ 3 (+ 2 (+ 1 0)))))

== (+ 5 (+ 4 (+ 3 (+ 2 1))))

== (+ 5 (+ 4 (+ 3 3)))

== (+ 5 (+ 4 6))

== (+ 5 10)

Figure 2: ISL’s abstract functions for list processing (2)

3



Problem 1 Design echo using one of the existing abstractions.

10pts.

The function consumes a list of Strings. Its result contains

every String followed by a String that represents the length of

the original one. Hint number->string comes in handy.

Show all steps of the template design recipe for using “loops.”

4



Problem 2 Design good?. The function consumes a Signature

and makes sure that every symbol that occurs in the Signature

12pts.

belongs to BaseType.

; A BaseType is one of:

; -- 'Number

; -- 'String

; -- 'Symbol

; -- 'Boolean

; -- 'Image

(define-struct -> [domain range])

(define-struct union [parts])

; A Signature is one of:

; -- Symbol

; -- (make--> List-of-Signatures Signature)

; -- (make-union List-of-Signatures)

;

; A List-of-Signatures is one of:

; -- (cons Signature '())

; -- (cons Signature List-of-Signatures)

5



intentionally left blank

6



Problem 3 Design the function depth for binary trees:

21pts.

(define-struct leaf [info])

(define-struct node [left info right])

; A [BT X] (binary tree over X) is one of:

; -- (make-leaf Symbol)

; -- (make-node [BT X] X [BT X])

; interpretation binary trees with nodes that

; carry some X-kind of value and Symbols as leaves

It consumes a [BT String] and replaces each String in a node

with the distance to the “root” of the given tree.

(a) Design depth without using an accumulator.

7



(b) Explain in one complete English sentence why using an ac-

cumulator is a good idea.

(c) Design depth using an accumulator-based approach.

Reuse the signature and examples from (a).

8



intentionally left blank

9



Problem 4 Design the function layer-cake. It consumes an

LC and counts how many 'layers are wrapped around 'cake.

8pts.

; An LC is one of:

; -- 'cake

; -- (cons 'layer (cons LC '()))

; interpretation an LC represents a layer cake

10


