
Student Name:

CS 2500/Accelerated Exam 1—Fall 2018

Amal Ahmed

October 17, 2018

• We will not answer questions during the exam. If you believe a prob-
lem statement is ambiguous, choose any non-trivial interpretation.

• Write down the answers in the space provided, including the back of
the given spaces and pages marked ”intentionally left blank”.

• You may use the paper copy of the book, your notes, and design-
recipe cards.

• You may not use any electronic gadgets (for example, watches, google
glasses, phones, tablets, laptops). Any use of an electronic gadget will
lead to immediate expulsion from the exam and class.

• You may use all the definitions, expressions, and functions found in
ISL+. Define everything else.

• The phrase “design a program” means that you should apply the data
and function design recipes. You may write ”c-e” as shorthand for
check-expect.

• Unless a problem requests a solution that does not use ISL abstrac-
tions, you may use these abstractions. Similarly, unless a problem
demands a solution that uses the abstractions of ISL, you do not have
to use these abstractions.

• Basic test-taking advice: Before you start answering any problems,
read every problem, so your brain can be thinking about the harder
problems in the background while you knock off the easy ones.

Problem Max. Points
1 10
2 18
3 11
4 8
5 13
Total / 60
Extra Credit 4

2

Exercise 1 (10 points)

Ahead of the November elections, you’ve been hired as a con-
sultant for a political campaign. The campaign keeps track of
contributions using the following data definition:

; An LOC (list of campaign contributions) is
; one of:
; - empty
; - (cons Contrib LOC)

(define-struct contrib [donor amount])
; A Contrib (campaign contribution) is one of:
; - Number
; - (make-contrib String Number)
; interpretation A simple number represents an
; anonymous contribution, while a
; (make-contrib d amt) represents a
; contribution of amt dollars from donor d.

The rules of campaign finance declare that an individual may
only donate $2700 to a given campaign. Furthermore, anony-
mous contributions are limited to $50.

Your first task is to design a program, any-bad-contrib?,
that checks, given a list of contributions, if any of the contribu-
tions on the list are illegal ones. Follow the structural design
recipe. Do not use ISL abstractions.

3

intentionally left blank

4

Exercise 2 (18 points)

Donors can try to get around the rules of campaign finance (see
the previous problem) by making multiple donations. The cam-
paign you are working for would like to ensure that none of
their donors have violated the law by contributing a total over
$2700. Your next task as consultant is to design a program, any-
bad-donors?, that takes a list of campaign contributions and
checks if the total contributions of any of the named donors on
the list exceeds $2700. You may reuse data examples you de-
fined in Problem 1 for tests.

5

intentionally left blank

6

Exercise 3 (11 points)

Design the function remove-duplicates. It should take

1. a list l

2. a function eq? that consumes two inputs (of the same type
as elements of l) and checks if they are equal

and remove all duplicate elements from the input list.

It should satisfy the following test. Note the order of the ele-
ments in the output list.

(check-expect
(remove-duplicates (list 1 2 3 2 4 3 2) =)
(list 1 2 3 4))

7

intentionally left blank

8

Exercise 4 (8 points)

Design the function map that, just like the map function in ISL,
consumes a function f and a list l, and produces a list with the
results of applying f to each element of the input list l. You
must define the function using just foldr, as follows:

(define (map f l)
(foldr ...))

9

Exercise 5 (13 points)

Design the common abstraction, including signature, for the
following two function definitions, long-films and head-
1st-quadrant. Then re-implement both functions using your
newly defined abstraction. You do not need to re-write their
signatures, purpose statements, or tests.

long-films

(define-struct film [title runtime])
; A Film is a (make-film String Number)
; It represents a film's name and runtime in minutes

; long-films : [List-of Film] -> [List-of String]
; The titles of films longer than 2 hours
(define (long-films lof)

(cond [(empty? lof) empty]
[(cons? lof)
(if (long-film? (first lof))

(cons (film-title (first lof)) (long-films (rest lof)))
(long-films (rest lof)))]))

(check-expect (long-films empty) empty)
(check-expect (long-films (list (make-film "LotR" 178)

(make-film "Casablanca" 102)))
(list "LotR"))

; long-film? : Film -> Boolean
; Is this film longer than 2 hours?
(define (long-film? film)

(> (film-runtime film) 120))
(check-expect (long-film? (make-film "LotR" 178)) #true)
(check-expect (long-film? (make-film "Casablanca" 102)) #false)

10

head-1st-quadrant

; Snake = NESegs
; NESegs (non-empty segments) is the list of segments of the
; snake's body; first element in the list is the head

; An NESegs (non-empty segments) is one of:
; (cons Posn empty)
; (cons Posn NESegs)

; head-1st-quadrant : [List-of Snake] -> [List-of Snake]
; Return only the snakes whose heads lie in the first quadrant
(define (head-1st-quadrant losnk)

(cond [(empty? losnk) empty]
[(cons? losnk)
(if (first-quadrant? (first (first losnk)))

(cons (first losnk) (head-1st-quadrant (rest losnk)))
(head-1st-quadrant (rest losnk)))]))

(check-expect (head-1st-quadrant empty) empty)
(check-expect (head-1st-quadrant

(list (list (make-posn 1 1) (make-posn 0 1))
(list (make-posn 0 1) (make-posn 1 1))))

(list (list (make-posn 1 1) (make-posn 0 1))))

; first-quadrant? : Posn -> Boolean
; Is this posn in the first quadrant?
(define (first-quadrant? p)

(and (> (posn-x p) 0) (> (posn-y p) 0)))
(check-expect (first-quadrant? (make-posn 1 1)) #true)
(check-expect (first-quadrant? (make-posn 1 0)) #false)
(check-expect (first-quadrant? (make-posn 0 1)) #false)

11

intentionally left blank

12

