
CSU2500 Exam 2 HONORS SUPPLEMENT – Fall 2009

Name:

Student Id (last 4 digits):

• This supplement to Exam 2 is in-
tended for students enrolled in the
Honors section of 2500.

• See the instructions on the regular
exam.

Good luck!

Problem Points /out of
1 / 5
2 / 5
3 / 15
4 / 15

Total / 20



8 POINTSProblem 1 Design the function even-frogs? that takes a list of symbols and
returns true if the symbol ’frog occurs in the list an even number of times.
Define the function using a loop function.

2



5 POINTSProblem 2 Recall that the contract for a Church numeral is

[X -> X] -> [X -> X]

For example, the Church numeral for 3 is

(lambda (f) (lambda (x) (f (f (f x)))))

1. Write cn+1, the Church-numeral equivalent of add1.

2. Write a pair of Scheme functions to convert between Church numerals and
regular Scheme non-negative integers: cn->int and int->cn.

3



5 POINTSProblem 3 An oracle is a function that knows about a number and can respond
to guesses about the number. Here is our data definition for Oracles:

;;; An Answer is one of:
;;; - ’low
;;; - ’high
;;; - ’ok
;;;
;;; An Oracle is a [Number -> Answer].

Th oracle fred, for example, knows about the number 5:

(fred 3) ; produces ’low
(fred 4) ; produces ’low
(fred 5) ; produces ’ok
(fred 6) ; produces ’high
(fred 7) ; produces ’high

1. Design a function number->oracle that makes an oracle for a given
number.

2. Design a function oracle->number that consumes an oracle and two
integers lo, hi, and produces the number the oracle knows. Assume that
lo < hi, and that the number known to the oracle is an integer in the range
[lo, hi).

Your function must be efficient; it should only make at most about 20
guesses in order to find a number in the range [0, 1000000).

4



[Here is some more space for the previous problem.]

5



5 POINTSProblem 4 Recall that in a previous problem, we defined sets with the data defi-
nition

;;; A [Setof X] is a [Listof X]
;;; No repetitions allowed.

and we then added an element-comparison function as an extra argument to our
set-processing functions, such as contains?.

One reason we need to add an element-comparison argument to set functions
is that we can’t otherwise handle sets whose elements are themselves sets. For
example, consider the set {1, 3, 5}, represented by the list ’(1 3 5). Is it a
member of the following set-of-sets-of-numbers?

’((2 4 6) (5 3 1) (42)) ; A [Setof [Setof Number]]

Yes, it is a member of the set—it’s the second item—but it’s represented as
’(5 3 1), so equal? won’t find it for us.

All of this would straighten out nicely if we just went ahead and defined a
function set=? for comparing sets that took a third argument for comparing ele-
ments of the set.

1. Define this function. (Hint: you might do well to define a helpful auxiliary
function.) Don’t write recursive code in your solution; use loop functions.

2. Now define numsetset=?, which determines if two sets-of-sets-of-numbers
are equal. It only takes two arguments, of course, not three.

6



[Here is some more space for the previous problem.]

7


