
CSU211 Exam 1 – Fall 2006

Name:

Student Id (last 4 digits):

Instructor’s Name:

High School (State):

• Write down the answers in the
space provided.
• You may use the usual primi-
tives and expression forms, includ-
ing those suggested in hints; for ev-
erything else, define it.
• You are not required to provide a
template unless the problem specif-
ically asks for one. Be prepared,
however, to struggle with the de-
velopment of function bodies if you
choose to skip the template step.
• You may obtain a maximum of 55
points: 50 for the first six problems;
and five extra-credit points for the
final problem.
• We will not answer any questions
concerning the exam or the 211 ma-
terial during the exam. Period. Re-
ally. Don’t bother to ask.

Good luck!

Problem Points /out of
1 / 6
2 / 6
3 / 4
4 / 10
5 / 11
6 / 13

Extra / 5
Total / 55
Base 50

6 PointsProblem 1 The light from a lightning bolt reaches your eyes almost instan-
taneously (travelling at the speed of light), but the thunder travels at the
much slower rate of 5 miles a second. Thus you can estimate your distance
from a lighting strike by counting the seconds between seeing the lighting
and hearing the thunder, then dividing by five.

However, your high-school friend, Dwayne (who is now in the honors
program at Boston University), has trouble with the math involved in this
concept. So you decide to help him out by automating the task.

Design a Scheme function for Dwayne that converts the elapsed time in
seconds between lighting and thunder into the distance in miles between you
and the strike.

;;; Grader: Christos

;;; Note: problem statement is wrong -- the correct calculation is
;;; to *multiply* by five, not divide. Give full credit for either
;;; the bogus, requested solution (divide), or the correct solution
;;; (multiply).

;;; lightning-distance: Number -> Number [1pt]
;;; Distance from lighting given thunder arrival time. [1pt]
;;; Example: given 20, the distance is 4. [1pt]

(define (lightning-distance time-diff) ;; [2pt for requested definition]
(/ time-diff 5))

;;; Tests: [1pt, 2 if there is no example]
(equal? (lightning-distance 20) 4)
(equal? (lightning-distance 15) 3)

2

6 PointsProblem 2 Evaluate the following program step by step and write down
next to each step whether it is (1) arithmetic (of any form), (2) function
application (“plugging in”) or (3) a conditional step.

(define (abs x)
(cond [(< x 0) x]

[(> x 0) x]
[else 0]))

(abs (- 10 4))

;;; Grader: Carl

(abs (- 10 4))
-> (abs 6) ; arithmetic [1pt]
-> (cond [(< 6 0) 6] ; app [1pt]

[(> 6 0) 6]
[else 0])

-> (cond [false 6] ; arithmetic [1pt]
[(> 6 0) 6]
[else 0])

-> (cond [(> 6 0) 6] ; cond [1pt]
[else 0])

-> (cond [true 6] ; arithmetic [1pt]
[else 0])

-> 6 ; cond [1pt]

3

4 PointsProblem 3 Suppose we are writing software for the embedded processors
that control the turnstiles on the T (the Boston subway, that is). During the
switchover from tokens to the new “Charlie” stored-value mag-stripe cards,
the turnstiles should handle both tokens and Charlie cards. So we use the
following data definition to represent payments in either form:

(define-struct magstripe-card (value))

;;; A Payment is one of
;;; - ’token
;;; - (make-magstripe-card Number)

Develop the template for a function that takes a Payment as its argument.

;;; Grader: Ryan

(define (payment-template pmnt)
;; A COND with 2 arms -- [2pts]
(cond [(symbol? pmnt) ... pmnt ...] ; SYMBOL? [1pt]

[else ... (magstripe-card-value pmnt) ...])) ; accessor [1pt]

4

10 PointsProblem 4 You spend your summer consulting for a media conglomerate
that owns several radio stations. Much of your code manipulates songs and
song play-lists that are represented via the following data definition:

(define-struct song (artist title year))

;;; A Song is (make-song String String Number)

;;; A List of Songs (LOS) is one of:
;;; - empty
;;; - (cons Song LOS)

Your manager needs the function, oldies, which takes as its input a list
of songs, and returns the list containing all the songs recorded before 1975.
Design this function.

;;; Grader: Theo

;;; oldies: LOS -> LOS [1pt]
;;; Filter input, keeping songs recorded before 1975. [1pt]
(define (oldies los)
;; [2pt: for two arms of COND.]
(cond [(empty? los) empty] ; [1pt, for base case]

;; [1pt: nested conditional]
;; [1pt: natural recursion]
;; [1pt: correctness]
[else (cond [(< (song-year (first los)) 1975)

(cons (first los)
(oldies (rest los)))]

[else (oldies (rest los))])]))

;;; Examples/tests: [2pt for a non-trivial example or two examples]
(equal? empty (oldies empty))
(equal? (oldies (cons (make-song "Let it bleed" "Rolling Stones" 1969)

(cons (make-song "Achy breaky heart" "Billy Ray Cyrus"
1992)

empty)))
(cons (make-song "Let it bleed" "Rolling Stones" 1969) empty))

5

11 PointsProblem 5 A polygon is represented by a list of its vertices, giving us the
following data definition:

;;; A Polygon is one of
;;; - empty
;;; - (cons Posn Polygon)

where Posn is as defined in the course textbook. For example, the triangle

is represented by

(cons (make-posn 7 5)
(cons (make-posn 10 -4)

(cons (make-posn -6 -6) empty)))

Design the function polygon-first-quadrant?, which takes a polygon and
returns true if it lies entirely in the first quadrant (x ≥ 0 and y ≥ 0) of the
plane.

6

;;; Grader: Dale

;;; polygon-first-quadrant? : polygon -> boolean [1pt]
;;; Does the polygon lie entirely in the first quadrant of the plane? [1pt]

(define (polygon-first-quadrant? poly)
;; [2pt for COND]
(cond [(empty? poly) true] ; [1pt base case]

;; [1pt: AND; 1pt: natural recursion]
[else (and (posn-first-quadrant? (first poly))

(polygon-first-quadrant? (rest poly)))]))

;;; Alternate definition with more logic and less COND:
(define (polygon-first-quadrant? poly)
(or (empty? poly)

(and (posn-first-quadrant? (first poly))
(polygon-first-quadrant? (rest poly)))))

;;; [Allocate same 2pt total if this code is inlined above.]
;;; Posn -> Boolean [1pt]
;;; Is the given Posn in the first quadrant?

(define (posn-first-quadrant? p) ;; [1pt]
(and (<= 0 (posn-x p))

(<= 0 (posn-y p))))

;;; Examples/Tests: [2pt]
(polygon-first-quadrant empty)
(polygon-first-quadrant (cons (make-posn 1 1) empty))
(not (polygon-first-quadrant (cons (make-posn 7 5)

(cons (make-posn 10 -4)
(cons (make-posn -6 -6)

empty)))))

7

13 PointsProblem 6 Your roommate, Chris, works weekends as a bouncer for a local
nightclub, and is responsible for checking ids at the door. Help your room-
mate out by designing a function to check birth-dates from drivers licenses
to ensure that the license holder is over twenty-one.

Suppose we represent a date with the following data definition:

(define-struct date (year month day))

;;; A Date is (make-date Number Number Number)

Design a function (over-21? birthdate today) that returns true if
someone born on date birthdate is twenty-one years old or older on date
today. Hint: First design a function that adds twenty-one years to a date.

;;; Grader: Olin

;;; over-21? : Date Date -> Boolean [1pt]
;;; Is someone born on date BIRTHDATE 21 or older on date TODAY? [1pt]

(define (over-21? birthdate today) ; [1pt]
(date<= (add-21 birthdate) today))

;;; Tests: [1pt]
(over-21? (make-date 2006 10 9) (make-date 2027 10 9))
(over-21? (make-date 2006 10 9) (make-date 2027 10 10))

(not (over-21? (make-date 2006 10 9) (make-date 2027 10 8)))

;;; [Allocate same 4pts if code is inlined.]
;;; add-21 : Date -> Date [1pt]
;;; Add 21 years to the input date. [1pt]

;;; [1pt]
(define (add-21 d)
(make-date (+ 21 (date-year d))

(date-month d)
(date-day d)))

;;; Test
(equal? (make-date 1972 9 29) [1pt]

(add-21 (make-date 1961 9 29)))

8

;;; [Allocate same 5pts if code is inlined.]
;;; date<= : Date Date -> Boolean [1pt]
;;; Compare two dates for <=. [1pt]

(define (date<= d1 d2) ; [2pt]
(or (< (date-year d1) (date-year d2))

(and (= (date-year d1) (date-year d2))
(or (< (date-month d1) (date-month d2))

(and (= (date-month d1) (date-month d2))
(<= (date-day d1) (date-day d2)))))))

;;; Tests: [1pt]
(date<= (make-date 1995 10 5) (make-date 1995 10 5))

(date<= (make-date 1995 10 5) (make-date 1995 10 6))

(not (date<= (make-date 1995 10 6) (make-date 1995 10 5)))

(date<= (make-date 1995 9 3) (make-date 1995 10 2))

(not (date<= (make-date 1995 10 2) (make-date 1995 9 3)))

(date<= (make-date 1994 11 3) (make-date 1995 10 2))

(not (date<= (make-date 1995 10 2) (make-date 1994 11 3)))

9

5 PointsProblem 7 (Extra credit) Your crazy instructors have taken on a con-
sulting software development job. They agreed to help some financial com-
pany translate their data into a reasonable format. The good news is that
they and the managers agreed on a data format:

(define-struct single (it rst))
(define-struct intval (low high rst))

+---------------------------------------+
|+----------------------------------+ |
|| | |
vv | |

;; A SON is one of: | |
;; -- ’done | |
;; -- (make-single Number SON) ----------+ |
;; -- (make-intval Number Number SON) --------+

The bad news is that they have never seen such a data definition before
and simply don’t know how to design a function that adds up all numbers
in a SON. Do it for them!

;;; Grader: Matthias

;;; sum : SON -> Numbers
;;; Add up all the numbers in the given SON.
(define (sum ason)

;; [3 pts, 1 per cond line/CONDITION]
(cond [(symbol? ason) 0]

;; [1pt: single-it, nat rec]
[(single? ason) (+ (single-it ason) (sum (single-rst ason)))]

;; [1pt: intval-xxx, nat rec]
[else (+ (sum-interval (intval-low ason) (intval-high ason))

(sum (intval-rst ason)))]))

;; MF: OK TO JUST ADD UP THE TWO NUMBERS AND THE
;; RESULT OF THE NAT. REC.
[else (+ (intval-low ason)

(intval-high ason)
(sum (intval-rst ason)))]

10

;;; OS: IF THEY ARE SOPHISTICATED, GREAT!
;;; sum-interval : Number Number -> Number
;;; Return the sum of the integers in the range [lo,hi].
;;; E.g. (sum-interval 3 8) = 3 + 4 + 5 + 6 + 7 + 8

(define (sum-interval lo hi)
(/ (* (+ 1 (- hi lo))

(+ lo hi))))

;; TESTS: if they don’t do that, they’ll fail!
(equal? 0 (sum ’done))
(equal? 1 (sum (make-single 1 ’done)))
(equal? 1 (sum (make-intval 1 1 ’done)))
(equal? 11 (sum (make-intval 1 4 (make-single 1 ’done))))

11

