

The second difference is constant

Exercise | Identify arithmetic, geometric, quadratic or noné. If anthmetic or geométric write in sum notation 1) 6, 15, 28, 45, 66, 91 Quadratic 9 18 17 21 25 4 4 4 4 2) 1, -4, 16, -64, 256, Geometric ×4 ×-4 ×-4 ^{x=0} 1-(-4)° 2 1 · (-4) K K=0 1-(-4)° 3) 4, 7, 10, 13, 16, 19, 'Arithmetic +3 +3 +3 +3 +3 211.21 24+3K 4) 2, 7, 11, 42, -4 +5 +4 +31 + -46 -1 27 None

Coming back to getting a, b, c for Quaciratic from the sequence

22 = 4a + 2(9 - a)

Geometric Senes Partial Sum

This can be a bit unintuitive for now we get this equation. Humor me for a moment

Partial $S = \mathcal{E} \cap \mathcal{A} \cap \mathcal{K} = \mathcal{A} \cap \mathcal{$ We want So let's compute r.S., for fun.... $r \cdot S = ar + ar^{2} + ar^{3} + \dots + ar^{N} + ar^{N+1}$ So consider the following: $S - rS = (a + ar + ar^{2} + ... + ar^{n-1} + ar^{n})$ $- (ar + ar^{2} + ... + ar^{n-1} + ar^{n} + ar^{n+1})$ all of these terms cancel out Leaving $S - rS = a - ar^{N+1}$ Remember S is what we want to compute so we solve for s $S(1-r) = a - ar^{N+1}$ 1-r

Thus	s S =	$\Omega_{0}(1-r^{N+1})$	
		<u>1-r</u>	
Exan	nple 1+z+	4 + 8 + 16 = 3	
	4		+1)
	EIZK	S = 1(1-2)	$\int = \frac{-31}{-1} = \frac{-31}{-1}$
	K=D	1-2	
reme	ember even tho	uan 5 terms, 10	rgest value
of	Kis 4	J	5
Summ	nony of Arith	metic, Geometr	nc & Quadrate
	(K=6)	Casaratic	Quadratic
	Z 4 6 8 10	1 2 4 8 16	1 3 7 13 ZI
Haw to	+2+2+2+2	×2 ×2 ×2 ×2	2468
identity	Difference constant	Constant ratio	+2+2+2
			constant second difference
Expression of Single term	a, + dk	a _o · r ^ĸ	ak2+bk+c
Computing	$Za_0+dK =$	$\sum_{k=0}^{N} Q_0 \Gamma^{k} =$	Calculus
Partial Sum			fun (not

